Some Nethods for Dynamic Analysis of the Scalp Recorded EEG

Karl H. Pribram", Joseph S. King", Thomas W. Pierce ${ }^{*}$, and Amanda Warren ${ }^{*}$

Summary: This paper describes methods for quantifying the spatiotemporal dymamics of EEG. Development of thesis methots was motivated watching computer generated animations of EEG voltage records. These animations contain a wialih of information about the pattern of chat across lime in the voltages observed across the surface of the scalp. In an effort to quandily inis faltern of changing voltages, we electud ter extra single quantifisble festure fron earh measurement epoch, the highest squared voliage among the various electrode siles. Nineteen channels of were collected Iram subjects using an electrode cap with standard $10-20$ system placements. Tivo minute records were obtained. Each record sampled at a rate of 200 per second. Thirty secunds of atifact-fee data were extracted from each 2 minute tecord. An alyorithm then determit the location of the chmel with the greatest amplitude for each 5 msec sampling epoch. We quantified these spatiotermporal dymantics as scat: vechors and chuster anatyic plots of EEG activity for finger tapping, cognitive effort (counting backwards) and telaxation to illusirate the utility lechniques.

Key' words: EEC; Cluster analysis; Vector: Scalar; MATIAB

Introduction

In recent years some of the most promising advances in the study of brain/behavior relationships have come from an increase in the power of imaging techniques (eg., PET, MRI, EEG) that can be used to correlale human brain aclivity with cognitive, emotional and behavioral processes. Of these, the recording of brain electrical activity (EEG or event-related potentials), though the oldest method, has benefitted as much as the others form the availability of powerful computational platforms. For example, Paul Nunez and others, revietved by Nunez (1995), have been able to increase the spatial resolution and determine phase relationships among EEG placements by using Laplacian mappings. Furthermore, Nunez has related EEG mappings to linear and non-linear systems. Similar advances have been made for ERP' a nalyses by Alan Gevins, who has developed covariance patterns among

[^0]experimentally isolated ERP events (Gevins and $C u$: 1995). Such mappings, produced by lines conso covariant ERP's, were shown to differ systematical: a function of fatigue during performance ... or? memory task.

At present, the major measures of brain :lect; activity have one advantage over other imvo $\quad \cdots$, niques -- that is, their potential for teniporal resolut. This potential is just beginning to be realized. I. Tucker, also using ERPs, has shown that a visual . .in evokes a positive occipital response (at approximat: 100 msec) and then a second occipital wave forr "reprise" (at approximately 300 msec) (Tucker et al. 1 Tucker et al. 1995). Using EEG recordings, That (1994) has traced the development of coherence patl in children, and Lehmann (1990) showed that, i:? absence of external stimulation, patterns of brain els cal activity appear to remain stable, on the average about 200 msec and then change fairly abruptt: wa pattern. Such dynamical analyses of successi if f electrical microstates open a whole new vista 1 . st: ing brain/belavior relationships. Bressler (1994) taken advantage of these new possibilities in deline; portrats of intracerebral synchronization and the w synchronizations vary over 80 and 240 msec perion: activily.

Advances in computer technology have enat our laboratory and others (e.g., Tucker et al. 1994; generate animations of changing voltages acrosarray of electrodes over time. However, as nots

Tucker et al. (1994) these "animations tax computational resources and pose new challenges for scientific communication" (p.151). Currently, the only tecinnique available for reporting findings based on these anima. tions is to present a series of static images of the scalp surface which represent the focations of peak activity at different points in time. However, this method does not provide a quantifiable means by which data oblained under different task conditions can be compared. Therefore, we have altempted to develop a way of quantifying the spatiotemporal dynamics of the EEG. The approach reported in this paper is based on mapping changes in the location of a single feature of each measurement epoch across time, the highest squared voltage. This approach retains the excellent temporal resolution available in EEG, while focusing attention in the spatial domain on one electrode location per measurement epoch.

Initial representations of the "path" of the highest squared voltage indicated that the location of this feature changed rapidily (over 50 times per second). Our term for a change in the location of the highest squared voltage was a "switch". The "path" of the highest squared voltage over time was thus called the "switching" pattern, and the number of changes in location per second became known as the "switching rate". However, it quickly became clear that our use of the term switching was misleading, because it carried the clear implication that a change in location of the highest squared voltage reflected the controlled movement of a signal from one location within the brain to another. Other laboratories have noted this problem in interpreting information regarding changes in EEG activity over time. For example, Tucker et al. (1994) stale that "Interpreting the shift in the N1 as actual movement of the eleclrical field could of course be misleading; sequential negativities over different regions could produce apparent motion" (pp 141-142).

In order to avoid the implication that changes in the location of the single highest squared voltage reflect the presence of a continuous wave across the scalp, we chose the term recrudescence as a label for changes in the location of the highest squared voltage, rather than the term "switching". The term recrudescence, of medical origin, describes a sequence of phenomena in which a phenomenon "pops up" but does not directly "cause" the phenomenon to appear at another location at a later point in time. Our use of this term emphasizes the "pop up" aspect of its meaning.

This paper describes two methods by which patterns of recrudescence can be depicted graphically. We also demonstrate the use of a statistical technique known as Cluster Analysis in representing the spatiolemporal dynamics of the EEG. The goal of all three
methods is to provide measures of changing EEC; roltage pallerns that can be used in comparisons of different groups of subjects and different task conditions as well as in replications of work done in other laboratories.

Melhods

Dala Acquisition

EEG data were collected using 20 Grass Mi i P5 A.C. preamplifiers feeding into a pc 486 compute: by way of two 16 -channel A/D converters. Ten channels of each converter were involved in data acquisition. EEG data were sampled at a rate of 200 per second for 120 seconds. Data acquisition and processing are controlled by BrainScope, an in-house software parkage. Electrodes were placed on the scalp using a standard 10-20 system with an EEG cap (Electro-Cap International, Eaton, Ohio) referred to both ears. Channel 20 is used to monitor eye movements for later artifact idenlificalion and removal and does not enter further into the data analysis. Dala sets are 30 second portions of the original 2 minute record, converted from binary to ASCII format and transferred to a Silicon Graphics workstation for analysis. Data sets are arranged in a matrix in which each of the 19 channels is represented by a different row. Each of the 200 per second sampte epochs is represented as a column in the data matrix. All aigorithms used to caiculate rate of change and to complete the graphical representations are written as MATLAB functions.

The methods presented in this paper are based on an: algorithm which detects and records the maximum value and location (row) of the squared voltages for each 5 msec epoch within the data matrix. The program then tracks the changes in the location of maximum amplitude between EEG channels and between successive sampling epochs. Finally, the changes in location are drawn onto a circular figure, which represents a simulated scalp EEG mapping surface. Data were collected during three condilions, all with eyes closed. The conditions wern. Relaxation (baseline), Counting backwards fror by threes, and right and left Finger tapping. Relax: and Counting backwards resulted in the most ir:' smative use of our analyses, so only results from these conditions are presenled in this report. In general, we have found other techniques, such as coherence plots, to ! vore useful in plotting brain electrical activity coordinate with behavior, while our dynamic analyses show promise in plotting brain electrical activity in subjectively experienced states.

We examined our records over the whole range of frequencies and separately for the theta; alpha, beta and
gamma ranges. When we checked the gamma (10 I dz) range plots against plots of $50-70 \mathrm{~Hz}$ and even against the $70-90 \mathrm{~Hz}$ range, we were unable to discern any difference. Therefore, these plots are not presented, as we could not comfortably assume that our gamma range recordings were free from muscle artifact.

Rates of Recrudescence

Rates of change of maximum amplitude between various electrode locations were obtained using an algorithm that searches and detects the maximum value of the voltage for each epoch in the data set. As this value is detected, the channel number containing that voltage is stored. The rate of recrudescence (appearance or reappearance of maximum amplitude in a different location) is then calculated as the number of changes in location of maximal voltage across successive epochs, divided by the total duration (in seconds) of the recording. As an example, assume that the data set contains 5000 sampling epochs. The algorithm would, therefore, record the maximum squared voltage and its location for each of the 5000 epochs. It would then count the number of successive epochs for which the location of the maximum squared votrage changed. Suppose that this was 300. Since 5000 samples at 200 samples per second represents 30 seconds of recording, the rate of recrudescence would be 300 divided by 30 seconds for a recrudescence rate of 100 per second.

Scalar Representalion of the Distribution of Recrudescence

Changes in location of peak amplitude across successive 5 msec samples taken during a 30 sec record are represented by lines (scalars) connecting any two electrode locations. These lucations are plotted on a circular diagram representing the approximate locations of the electrodes on the scalp. As the maximum amplitude recurs between two locations, the line between those locations is drawn thicker. Thus the lines connecting electrode locations show that the most frequent joint sequence of maximum amplitude activity becomes denser.

Vectorial Representalion of the Spatial Distribution of Recrudescence

The scalar lines connecting the points of maximum amplitude depict the successive points of maximum EEG amplitude, but do not provide information regarding the direction in which recrudescence is operating. For example, frequent recrudescence between F 2 and T 4 does not distinguish between a voltage peak at F2 fotlowed by one at T4 and the reverse, a voltage peak at T4
followed by a peak at F2. As the utility of the dynamic analysis is explored, we hope that an underlying process that directs the rapid changes in the location of amplitude will be discovered. As a first step in such an ; ;horation, a vector representation is constructed. which provides a surlace view of the direction of movement of recrudescent maximum amplitude points. The purpose of the vectorial display is to provide a graphic depiction of quantitative indices of directionality in recrudescence between etectrode siles.

The display is based on a 19×19 matrix in which rows are the 19 locations at any one epoch, and the columns are the same 19 locations at the next recorded epoch. Cells along the diagonal indicate no change in location of maximal voltage between successive 5 msec epochs. Within this matrix, we simply count the number of successive epochs in which maximum voltage changed from one electrode to another. The tota! number of such occurrences are tabulated in each cell of the matrix. Therefore, the matrix constitutes a frequency distribution of directionally specific recrudescent activity between electrode locations. This frequency distribution is represented as a contour diagram, which accompanies each frequency matrix.

Statistical Anolysis of Changing Voltage Potterns

Cluster analysis is a statistical technique that groups cases together on the basis of similar profiles of variables. Cluster analysis has been used in the context of EEC research to assign individual subjects to clusters on the basis of variables derived from one or more EEG sessions (e.g., John et al. 1992) or to assign segments of EEG to dusters (e.g., Friedman and Jones 1984). In this paper, we use cluster analysis to assign each "moastirement epuch" to one of two clusters or prolites on the basis of the patturn of 19 voltages obtained at each epoch. The goal of these analyses was simultaneously to take information from all electrodes into acco ${ }^{\cdots}$.nd to categorize the patterns of voltage changes over lime. We chose two clusters to represent the pattern of unsquared vollage change - that is, maxima and mimion -- over lime not just the voltage of a single elec:ar e (highest squared voltoge) that was used to describe recrudescence. This allowed the analysis to determine differences between two clusters with regard to the sign of the vollage (that is, positive or negative deflection from baseline). The pattern of changes from one chuster assignment to another over time could thus provide information about the type of psychological activity (e.g., relaxation versus cognitive effort) during those portions of the record.

Two separate cluster analyses were conductes, with twenty second records of unfiltered EEG obtained from

Figure 1. Scalar representation of Iwo different portions (early and lale) and iwo data set lengths (5.5 and 20.0 secs.) of the baseline condition: Figure la and 1b, lolal; ic and Id, thela; and Ie and II. beta.
both the Counting and Baseline conditions using the cluster procedure available from SPSS (Statistical Package for the Social Sciences). Epochs in both conditions were assigned to one of two clusters.

Resulis

Wilhin-Record Replication

The stability of our scalar and vector representations with respect to the location of the epochs is presented in figure 1 , which shows scalar representations of one subject's data from different portions (early and late) and two data set lengths (5.5 and 20.0 sec) of the resting (baseline) condition. Figures 1 a and 1b represent total EEG; figures 1 c and 1 d represent thela; and figures le and if represent beta activity. Alpha activity gave identical resulls, emphasizing the occipital region and is not presented to conserve space. Note the consistency in the overall pattern of scalar representation as well as the similarity in recrudescence

rate as both data sel length and position in the ' record are changed. The only noticeable differ that, as expected, the tracings are darker in the records. Vector plots also showed this stobility: samples taken at different times and within fre: bands.

Scalar Plots of Counting Experiment

Representations of the Jocation and ampounto descence during retaxation and counting backwar. ditions are presented in figure 2 ($\mathrm{a}-\mathrm{f}$). For toi recrudescence rates for relaxation and countin wards conditions were 116 and 109 per second. tively.

Of interest in these plots are differenes betw relaxation and counting conditions in the overall of recrudescence among electrode loci..ons. N . ticularly the "triangular" pattern among F7, T3 . total EEG. In the alpha band, the pattern ciua more scattered recrudescence with a strong pat.

Figure 2 (a-f). Scalor representations of recrudesce Tolal, alpha and beto EEG during resting and $c \circ$ backwards.

Figure 3. Malnix and mean vector (contour) plots of recrudescence corresponding to the scalar representations of fi 20 and 2 b . Baseline, 30 and 3 b ; Counting. 3 c and 3 d .
tween right posterior and frontal areas (for example, between O2 and F1). In the beta frequency band, the original triangular pattern in the resting condition spreads to include other frontal locations during counting.

Vector Representalions of Counting Experiment

Matrix and mesh vector (contour) plots of recrudescence corresponding to the scalar representations of figure 2 are presented in figures 3 and 4 . The highest values in the matrix are often on the diagonal formed from the lower left to the upper right of the matrix representations of recrudescence. This indicates that most frequently
thure is no recrudescence between adjacent 5 msc . ocis. Thr the contour plots the diagonals have supprewed (set to zero) so that patterns created by re rudescen :a will be more apparent.

Figure 3 (a-d) presents graphs of total EEG d bascline and counting conditions and transforms th. in figure 2 to represent the direction of change in mum amplitude between pairs of electrode loc The :epresentation on the top is the matrix dir whereas the one on the bottom represents a twosictial tecquency histogram (contour plot) of the data. Tie diagonal which runs from the lower left. to the uy per right corner serves as a teference for 5 . the matix representations. Symmerry about i

Figure 4. Malfix and mean vector contour plots of fecrudescence for olpha aclivily corresponding to scalar 1 senlations of figure $2 c$ and $2 d$. Boseline. $4 a$ and $4 b$: Counling. $4 c$ and $4 d$.
nat indicates an equal amount of recrudescence from successive epochs between pairs of electrodes. The lower left quadrant of the matrix represents recrudescence among more frontal electrode locations, whereas the upper right quadrant represents recrudescence among more posterior electrode locations. Note the frontal recrudescence (denoted by the light areas) in lotal EEG during relaxation, baseline conditions in figure 3a. This pallern (frontal recrudescence) persists during counting, but it is somewhat less concentrated within frontal areas. Similarly, in figure $4 a$ and $4 b$, concentrated recrudescence among occipital areas in the alpha band during baseline spreads out to other focations during counting. Finally (figure 5 a and 5b) shows concentrated recrudes-
cence among lemporal lobe leads in the beta band rest, which changes to a more distributeci pattern counting.

Cluster Representations of Counting Experimr

When measurement epochs using unsquar: ages were classified as belonging to either a f second cluster, descriplive statistics indicated two clusters differed from each other in terms of of the mean voltages over time at eac electro Epochs assigned to Cluster 1 have mean voltag nineteen electrode sites that are positive. Chust: mean voltages at all nineteen electrode sites :

Figure 5. Matrix and mean vector (contour) plots of recrudescence for beta activity corresponding to scalar representations of figures 2 c and 2 f . Baseline, 5 a and 5 b : Counting 5 c and 5 d .
negative. No differences in the pattern of mean voltages across electrode sites were observed between EEG records obtained in the Counting and Baseline conditions.

After each measurement epoch ivas assigned to either Cluster 1 or Cluster 2, plots of cluster assignment for each measurement epoch were obtained for both the Baseline and Counting conditions. Figure 6 displays the cluster assignment for each epoch in a 500 msec sample of the complete record during the baseline condition for the same subject. Figure 7 displays the clusler assignment (1 or 2) for each measurement epoch in a 500 msec sample of the full 20 second record while one subject was counling. Visual inspection of both figures clearly shows that periods of time in which the rate of switching from
one cluster assignment to the other is slow (e.g., Epoc' 1-70 in figure 6 and Epochs 1-39 in figure 7) are inte: rupted by periods in the record where the rate of ctirste switching is rapid (e.g., Epochs $75-93$ in figure 6 anc Epochs 39-45 in figure 7). Visual inspection of the rateof cluster switching in the baseline and counting r or indicated that the frequency of very short chusier seg ments (i.e., portions of the record where less than five consecutive epochs re assigned to the same cluster) w: higher in the Counting condition than in the Baselin condition. This hypothesis generated by visual inspec tion was submitted to statistical analysis using the Chi. Square test as reported below.

Figure 6. Cluster Assignment of 100 Consecutive Measurement Epochs (500 msecs) for Unflitered EEG During: The Basetine Condition.

Figure 7. Cluster Assignment of 100 Conseculive Measurement Epochs (500 msecs) for Unlillered EEG Dufing the Counting Condition.

Rale of Cluster Switching

A program written in C++ counted the number of clttster segments at each possible length of a segment (i.e., the number of consecutive epochs assigned to a single cluster). Figures 8 and 9 display the percentages of the time in which each cluster Segment Lenglh was encountered for the Baseline and Counting conditions, respectively. A higher percentage of short cluster segments (i.e., representing fast cluster switching) was present in the Counting condition than in the Baseline condition. This observalion was confirmed by a Chi-Square analysis
that indicated that the percentage of short el ar st, ment lengths (between 1 and 5 epochs in eacit clustf segment) in the Counting condition was significantl higher than the percentage of short cluster segments in the Baseline condition $\left(X^{2}(1,32)=5.2, p<.05\right)$. One quan titative difference in the dynamical pattern of EEG vel. age charges between two cognitive task conditions ha. thus been established.

Figures 10 and 11 display values of the highes squared voltage over the same 250 msec samples of re cord used in displays of the Cluster Switching rates fo the Baseline (figure 6) and Counting (figure 7) condition: Visual inspection of these and other portions of the corr piete records for Baseline and Counting conditions ind cates that slow rates of cluster switching are associate whith higher sqtared vottages (e.g., Epochs $75-9$: ' or th Baseline condition and Epochs $39-45$ for the Countir

Figure 8. Percentage of Segments al Each Possi. ie Cl.ر Segment tength for Unfittered EEG During the Er: e: Condition.

Figure 9. Percentage of Segments al Each Possible Clusi Segrnent Lenglh for Uniltered EEG During the Countin Condllion.
\bullet

Figure 10. Highest Squared Vollage at 100 Consecutive Measurement Epochs for Unfillered EEG During the baseline Condition.
condition). These visual observations were addressed through statistical analyses using ANOVA, as reported below.

One-way ANOVAs were used to compare the mean highest squared voltages for short cluster segments (one to five consecutive epochs in each segment) and long cluster segments (30 or more consecutive epochs assigned to the same cluster). Separate ANOVAs were conducted on data from the Baseline and Counting conditions. When data from both the Baseline and Counting conditions were examined, epochs in short cluster segments were found to have significantly lower highest squared voltages $M=64.04, \mathrm{SD}=67.44$ for Baseline; (M $=42.20, \underline{\mathrm{SD}}=24.26$ for Counting) than epochs in long cluster segments $(\underline{M}=118.76, \underline{S D}=87.22 / \underline{E}(1,1893)=$ 151.62, $\mathrm{Q}<.05$ for Baseline; $\mathrm{M}=104.40, \mathrm{SD}=68.64 /$ $\underline{F}(1,2718)=362.14 ., \mathrm{p}<.05$ for Counting $)$.

Discussion

The foregoing data illusirate the possible utility of some methods of dynamic analysis of the EEG made possible by recent advances in both hardware and software computer technology. The various depictions not only provide spatiotemporal images of EEG dynamics but also provide the bases for quantification and subsequent statistical analysis of the temporal course of EEG dynamics.

To us, the most important and surprising finding of this study is the rapidity of change in electrical pattern. Recrudescence rates ranged from 60 to 170 per second. Next, the technique showed that under the conditions of

Figure 11. Highesः Squared Voltage of 100 Conseculive Measurement Epochs for Unfitlefed EEG During the Coun. ing Condilion.
the investigation, there were no ctear cut sweeps of wave. fronts across expanses of scalp. Rather the maximut: squared potential "popped up" in one bocation and ther in another totally different location over time. Recrudescence rates and the scalar diagrams thus provided ar initial quantification of the speed of change at 1 spai distribution of EEG activity, respectively. The atterr. so generated allow for quick and accurate (as accurate a the particutar recording technique will atlow) compari sons of spatial dynamics between individuals or betweic experimental conditions.

The vectorial representations provide information on the directionality of recrutescence between all pairs of electrode locations. It is informative that most ofter for the sample rate of 5 msec used in our studies th. location of highest squared voltage does not change across successive sampling epochs. With the diagonat formed by this lack of change in the record as a baseline. we can also obtain a picture of directional relationship between all electrode locations. Sample rates at 100 sam. ples/sec (i.e., one each 100 msec) demonstrated no appre ciable difference in the pattern of recrudescen

To assess the duration between stable ep iths, ${ }^{1}$ statistical analyses that we undertook and their, oomf nying graphics allow a more inclusive look at the tempo: dynamics of recrudescence among spatial locatior. Lehmann (1990) had demonstrated that standart dev lions across successive measurement samples of alp. EEG (64-128 samples per secont) exhibited a cyclic pat tem corresponding to approximalely 20 peaks per secom He then showed that during periods when the standari deviation of successive epochs was highest, that the loca-

Figure 12. Overlay ol Squared Vollage and Cluster Assign. ment for Baseline and counting for alpho activity.
tion of the highest and lowest voltages remained stable for approximately 200 msecs. In order to replicate and extend these findings, we fillered (IIR digital filter) our EEG data for two conditions in the experiment (baseline and counting) for alpla (8-12 1/z) activity. We plotted the highest squated voltage at each of 100 successive measurement intervals. A cluster amalysis was conducted, as described earlier, on the wnsquared voltages, separating eachmeasurement interval into one of two chusters. We then plotted the patlern of these clusters nver the same 100 successive ,intervals (sampie rate 200 IF) as was used to plot the highest squared voltages. The results of this amalysis are illustrated in figure 12 A and B .

Consistent with lehmann's results, we found that the highest squated voltage (solid lime in figure 12 A and B) cycles at a rate of about 20 Hz . Lehmann found this same cycle rate in standard deviations actoss successive sample intervals. When viewed in concert with our cluster analyses, however, an interesting relationship emerpes. Nole that whemever the highest squared voltage is at its peak, the pattern actoss the 19 electrodes remains on a single chaster (dashed line in figure 12A and B). Changes inchuster assignment are associated with the
trough of the highest squared voltage. Nute alst regularity of the changes in cluster assignme:it, part larly in the baseline sample. This regularity is consis with the regularity in the alpha EEG.

However, contrary to Lehmann's analysis, we that the pattern across 19 electrodes remains stable! average of only 50 msecs during rest, as ofjosed t : average of 210 msecs in his data. Perhaps this differe is due to his lower sample rate ($64-128$ samples per ond), or the fact that he used only two electrodes (t) with the highest and lowest voltage). Analyses invol cluster segment length thus appear to be especially p ising. This is borne out not only in the comparisor can make with Lehmann's work, but in ' : ai . frequency distribution of cluster segment length :. criminate between the Baseline and Counting condit; As did Lehmann, we are currently examin'ig the tionship between EEG measures and behavioral re_{F} time. We are also using time series techniques to qui int fication of the pattern of cluster switching aisplay figures 6 and 7.

We ourselves plan to explore the utility of usir Laplacian correction to entance localization of recor voltages across the scalp. However, a 19 -electrode a most likely provides insufficient samples for such : rection. A 128 -electrode net provides the oppo iuni accurate reference-independent voltage correctio; each electrode site. The application of both oltage: Laplacian (current density) data as used by Tucker (in developing programs used with the geodesic net? promise for future studies of the spatiotemporal dy ics of EEG.

References

Bressler, S. Dynamic self-organization in the brain as ob: seo by transient cortical coherence. In: K.H. Pribram : A.). Origins: Brain and Self Organization, Hillsdalt Lawrence Erlbaum, 1994.
Friedman, L. and Jomes. B. Study of sleep-makefulness: er by compuler graphics and cluster analysis befor. alter lesions of the poutine tegmentum in the cat. El. Thysiology and Clinical Neurophysiology, 1984, 56.

Gevins, A.1. and Cutillo, B.A. Neuroelectric menantes of In: ['L. Nunez (Ed.), Neocortical Dynamic: "ad' EEG Rhythms, New York: Oxford University 1 Tes. 304-338.
John, E.R., Princhep, L.S. and Almas, M. Subtyping of p: alric patients by cluster amalysis of QEEG. Brain To; phy, 1992, 4: 321-326.
Lehmann, D. Brain electric microstales and cognition: Th. of thought. In: E.R. John(Ed.), Machinery't . wime Theory and Speculations about Higher Brain Fu Cambridge, MA: Birkluaser-Boston, 1990: 209-224.
Nunez, P.L. Neocortical dynamics and human EEG rh:

[^0]: - Department of Psychology and Center for Brain Research and Informational Sciences, Radford University, Virginia, USA.

 Accepled for publication: April 12, 1996.
 We wistr lu thank fanclua Annamalai -- for developing the cluster program in C++; to Terry L)'nn Hayes for help in constructing the figures; to Shelli Meade for manuseript preparation: and Nora Reilly for lane of her brain.

 Correspondence and reprint requests should be addressed to Dr. Karl H. Pribram, Center for Brain Research and infurmational Sciences, Radford University, P.O. Box 6977, Radford, Virgimia, 24142, USA.

 Copyright (©) 1996 Human Sxiences Press. Ine.

