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The problem addressed in comcreto is the refation of information provided by vibeating
strungs 00 thal provided by systems describable with eguathons of one depres of freedom.
Whereas the mathemaiscal physics of vibrating strings is based on the wave equation——a
second-order differential equation of at least two degrees of freedom—a quantum model
ur:::'ﬁmhun theory has only been considered for a mechanical system of one depres of
i ,

The solution obtained fn ahafrgedo is: a complete sipnal representation mformation-wiss
exists in Hilbert space. With an increasing degree of freedom to vary of any syslém comme-
spomels @n increxsing number of phase representations of the signal producible by the
system in that space.

A corollary conclusion is: the speciral analysis of signals based on Wiener's Fourier
method is incomplete. A complete conception of information based on complex signals
if Bwie subspaces of Hilberd space is more general, A spectral analyves of the information

aviilable in signals in Hilbert space is thus possible giving n possible explanation for the
timbre of A sound.

INTRODUCTION

Lord Rayleigh's two volumes on the theory of sound [1] treat the stimuli anising from vibrating
strings in detail, Since such stimuli arise from simple mechanical systems, their treatment in
an information theory analysis should alse provide a simple description. The physics of
vibrating strings is based on a wave equation of two degrees of freedom and the question
arises: how can the information produced by & system describable by a wave equation be
compared and contrasted with that produced by a system describable, e.g., by an equation of
one degrec—or m-degroes—of freedom? This paper presents a general solution to the
prohlem.

First, however, bet us distinguizh our approach to mformation theory from that of Shanoon.
Shannon’s work [2] involves the resolution of uncertninties concerning final outcome in
the face of a repertoire of possible occurrences, these occurrences possibly varying in their
probabality of occurrence, The accent 13 on hypothetical transmission of events defined
abstractly, so that a temporal aspect 15 given to the theory. Thus, his work may more properly
be termed transmission theory—to distinguish it from information theory based strictly on
energy distribution—a distinction he was aware of, This paper will not be concerned with

this latter type of information theory but rather will address the analog information theory
of Gabor [3].

ARGUMENT

We shall commence by defining a signal completely in Hilbert space. The complex numbers
= and § are defined so that 8 is the complex conjugate of «:

a=AF Jt + ity

B = Af. i = jfy. 15, m
407

e




|
1'.
b
}

408 T. W, RARRETT

where Af, signal bandwidth, and Ar, signal duration, are reciprocally related for a minimyymy,
willue by the uncertainty condition,

Af e =12 (¥

[3, 4] and f;, the average signal frequency, and 1y, the average period, are related by the logica)
relation, fy.ty = 1/2 for & minimum value, A signal is the inner product ca® in subspace
M, M;—spaces square summable and defined by

H=M,.M,. (3)

Space H is a Hilbert space. Such a signal is a bilinear functional on the spaces M, and M, and,
by the uncertainty condition stated above, is symmelric.

Mow, the signal bandwidith = duration uncertainty product defined as the minimem
information quantum or logon—df. At = one logon at the minimum value of 12 [3}—can, for
example, be used to represent the output of a system described by a differential equation of the
form [5]

dlx dx

A—5 + D— -
a1 T dr+ﬁ;‘.: &, 4

where fy = (1/2x)V KA, Af. At = (2/2r)v(e* — 1), and ¢™ expresses the change in energy
discernible by the system.

I would like to emphasize that the expression for 4. 4r makes no reference to the system
parameters but anly to the energy resolution parameters: * and . Clearly, these parameters
may be related in any way to any system considered, in which case this simple expression for
Af. At used in equation (4) will represent summed effects and hide the unique relation of the
encrgy resolution parameters to parameters of the system considered.

A system such as that of equation (4) has but one degree of freedom, and from the above
consideration an information analvsis of the signals producible by it can be represented aa

set of numbers in Hilbert space. We shall now turn to vibrating strings which are systems of

more than one degree of freedom and for which a more complex analysis is needed.
By a theorem of E. Schmidt [6, p. 243], every function, say 4(x, ¥), which is square summable
and symmetric can be developed, in the sense of convergence in the mean, into the series

A ) = 2 o S ). (5

where ¢,{x) denstes the orthonormal sequence of characteristic functions and y, the sequence
of corresponding characteristic values of transformation 4 generated by the kernel A(x,y)
In the case of a vibrating string, the plane (x, ¥) is the plane of vibration ; the string is assumed
fixed at the points (0,0) and (1,0) and the string’s movements described by a function, Wx, /).
The specific analysis is as follows.

The second-order differential equation describing the behavior of  vibrating string is the
wave equation,

@y 13y
L L ﬁ
Pl L 6
a solution for which s

Wx, iy = (g cosp. t + b, 5in g, 1) e(x). (7

We shall show that the expressions ¥, (@,cosp,f + b,sinp, 1) are characteristic functions
e} = ufx).
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From t@ue consideration that the function ¥x, 1) corresponds to the movements of which
the string is capable in the time interval 0 > r= T, it may be defined with respect Lo its ability
to make the following integral stationary [6]:

f (E.— E,)dt = bj'rdr ’_; f' (%}zmm . ; J’ [;‘_:)’Eamﬂ] | P~
whens

E=) _f (3) amea ©®
o

is the kimetic encrgy of the stnng,

E=; [ () camo (10)
L]

is the potential energy of the string and dm(x) is the mass borne by the segment (0, x) of the
string. A function »(x,t} is defined satisfying the limit conditions: n(x,0) = 0; wix, T)=0.
Therefore, equation (8) is redefined :
T 1

1
i d ]
Jd:[ ;::—fdm{x}—h“:—':ézdmfﬂJzﬂ {1
L]

and by equation (5), p{x,1) may be defined in the metric of Hermitian (and Hilbert) spaces
D and #, if x and ¢ are symemetric:

Wz, =3 el huwlx), (12)
d
5 (0 1) = 5 ) () (13)
[t can be shown that the coeficients
alr) = (3 u)g (14)
and
)
dx - (a—_-:l-."is‘i.}n {]j]'
are reiated
dr) 'pi. o), ' (16)

By redefining the function w(x, ¢) satisfying the limit conditions,

nlx, 1) =yl ulx), {17)

where y,(t) is a fanction which is zero at points ¢ =0 and ¢ = T, and possesses a continuous
derivative, but is otherwise quite arbitrary, equation (11} may be written as

L,
dealya f 4
ﬁ[ m(ﬁﬁ o c.j-.} -0, (18)
where
Cylf) = agcosp, ¢ + by, 50, . (1)
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These functions c,(r) are charactenistic functions and have 2 representation in the mejre
of the Hilbert space D, The characteristic functions, uy(x), of equation (1 2) are an orthonormg)
sequence in the space }f and if the string is homogeneous they satisfy the differential equatiag

My

kot Ly =

3 +ptu =10, {20y
We shall now turn to information represeniation in general.

Any system gives rise (o an energy distribution of information in which the triple produst
of resolution limdis, UV, is defined in the form

AE 4f dr
A Y (21)
where AE is the least energy change resolved by the system, dfis the least frequency change
resolved by the system, i is the least time interval during which the system is capable of
changing 15 enérgy storage, By 15 the initial amount of energy stored in the analyzer, § iz ihe
natural frequency of the analyzer and T is the natural period of the system,

Such a triple product is the volume of a region within which no change of stale may be
observed. L is called the indication limit [7]. The uncertainty relation is

£ Laide ﬁ: } (leta}m]“ = Ef‘fu}m' &

The definition of information “quanta™ in terms of equation (22) is based on the response of
any system or analyzer which exhibits osoillatery behavior. We shall show that for 1|'|'|:|I!:|.'I||1|I
strings it 15 a half truth.$

The system's information response defined by equation (22) has one degree of freedom as
far as defining the number of logons is concérned : 1.g., the right-hand side only is taken inio
consideration. The representation expressed inequation {1 2), on the other hand, is the solufio
o a wave eguation and has iwo degrees of freedom. 1t 15 evident that whereas a description
of the distribution of energy (by the AF. At relation) in a system of two degrees of Treedom will
also have two degrees of freedom to vary, & description of energy in a system of one degres
of freedom will have but one degree of freedom to vary, As information theory is basically a
description of emergy distribution (although not of absolute energy amounts), equation (22}
represents a summed result, Thus, corresponding to the characteristic functions u, and ¢, of
equation (12) we have (4f, Ar), and (4f. d1), [and equation (22) applies to F, (45 41)).
5|m:|: Hx 1) =% a(f)u(x) is -:;-.nmm:mc or {if the mm]:llc:i ense is studied) Hermitian, " i

U=

_E!:I:Iﬂil |nFu:+rma.t|l:|:n. B.I'.IE.|'!|'5I5 in Hilbert space has twi rep-re-mu:atmm En lhl.‘ case of vibrating
strings. This conclusion has interesting implications for the physics of hearing as the function
of the cochlea is a hydrodynamic problem, whether the function describing the system i
symmetrc or not.

In what way, for example, will the cochlear response to (i) W) =eglt), (i) px, 0=
et hulx) and (i) wWx, 1) = el el y) differ? As Af. d¢ = 1j2 =1 logon is based on
energy resolution parametérs alone [equations (4) and (22)], at first blush there would appear
to be no difference. Yet the restriction that ¥, A5, At cannot equal less than 1/2 (which is one
logon) does not stipulate how the minimum energy resolution parameters may be displaced
or relnted among parameters of the system.

Thus in case (i) we might have (Jf.dr), = 5, (4F.4¢), = 1/2 for a minimum valee. In
case (i) we mig!n have (Af.4r), + [.-:I,r.dn,,-—i. (Af. 1), = 12, for a minimum value,
where (Af. At), = % and (4f 4e), =&; or, (4F. dr), = % and {4f.41), = ; or any other

1 The arbstrary natwre of hasing an informaboen syssem on 2 second-order differential equation was, of
course, recognized by Corliss [5].
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combination, provided ¥, (AF. Ar), = 172, In case (i) we might have (dF. A1), + (47, 4r), +
(Ar.de), = F, (4F. dr)y = 12, Tor a minimum value where (4f 2t ), = f& and (A7 1), =
(dr.dt)=4; or, (Af.At), = and (AF.dr), =(df. A, =4; or (4F.4r), =4 and
(dr.de), = (4f.dr), = §; or any other combination, provided ¥, (47 1), = 1/2. A similar
argument applies to the relation fj . 1,

One ¢an continue the explanation on into physiology : at the basilar membrane a traveling
wave occurs with auditory stimulation which peaks at a place corresponding 1o the freguency
of that stimulation. This peaking of the traveling wave is presumed to excite mechanically
hair cell receplors. Thus, a Fourier transform is performed on the incoming signal. In cases
{it) and (iii) the center frequencies, /3, of cach (4f. A}, may differ. Then different places on
the basilar membrane are excited; yet when ¥, (47 dr), = 1)2, ic. its minimum value, the
information content would be similar. Even when not at its minimum value, the different
dispersions of excitation would still be related to similar amounts of information.

The eigenvalues of the system in which the energy of the signal was first stored or dispersed
{prior to transduction through the air) reflect more accurately the true situation at the
basilar membrane. Suppose, for example, that in case (i) (A5 de), + ffG. 1) = (47 do), +
ffatahy = 12+ 12 (e, 5, (4. A0), 4 i fy. tedy = 1 + j1); then a,af = 1/2 and a,a® = 12
and ¥, a,a; = I, Let us suppose, as an cxample, that /i, = 4 kHz; then g, = 125 ps, A7, =
1000 Hz and Ar, = 500 ps; il f3, = B kHz, then £y, = 63 ps, Af, = 2000 Hz and Ar, = 252 ps.
Compare this case with (df. dr).+j(fs-ted =3 +j3 and (AF.A0) + 5 f5. to)= % + j}
[i.e., 2o (AF. 00 4 j( f.0), = 1+ /1 as before], The situation is different yet the number
of logons is the same. Bur in the second instanee 7, o, a] =2, whereas this measure was 1 in
the first instance. Similar arguments exist for differences between symmetric functions of
differing degrees of fmeedom,

The Hilbert space measure, ma®* of equation (1), is a measure of energy distribution in-
homogeneity and will reference the number of degrees of freedom in the equations describing
the system producing a signal as well as summed information measures, The Hilbert space
measure will thus distinguish between the timbre of, say, a trumpet and a violin, as well as
between a violin and a celle, because the equations describing such systems differ in the
number of degrees of freedom involved, More importantly for physiologists, such a measure
will correlate with events at the basilar membrane,

The general conclusion is thus: for a system of one depree of freedom there is only one
phase to the Hilbert space representation; for a system of two there are two phases; for a
symmetric function yx,p. 1) = 5 el hudx)ee ¥) or y(x,y, 1) = Wi, »,x), there are three, and
50 on. As far as information s concerned, a machine can be defined by the way it distributes
energy intfoduced 1o it,

Finally, the observation can be made that whereas Wiener's [8] signal analysis proceeded
from circular functions 1o Fourier analysis and then to spectral analysis, due to the above
considerations, it is, pethaps, a more basic sequence to commence with energy distribution
considerations of the system, proceed to signal definition and thence to o Hilbert space
representation. A spectral apalysis in Hilbert space i3 readily available [9). As signal
representation in terms of equation (1) is more complete, the latler sequence seems to be more

fundamental,
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