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The problem addressed in concreto is the relation of information provided by vibrating 
strings to that provided by systems describable with equations of one degree of freedom. 

rord : Pergamon Press. Whereas the mathematical physics of vibrating strings is based on the wave equationAa 
c non-linearity due to second-order differential equation of at least two degrees of freedom-a quantum model 

of information theory has only been considered for a mechanical system of one degree of 
4cGraw-Hill. 

i92. Analysis of echoes exists in Hilbert space. With an increasing degree of freedom to vary of any system corre- 
sponds an increasing number of phase representations of the signal producible by the 
system in that space. 

A corollary conclusion is: the spectral analysis of signals based on Wiener's Fourier 
method is incomplete. A complete conception of information based on complex signals 

- a sound field in two subspaces of Hilbert space is more general. A spectral analysis of the information 
available in signals in Hilbert space is thus possible giving a possible explanation for the 

I timbre of a sound. 
lysis of echoes 

INTRODUCrION 
ca 39,276-279. ' ~ o r d  ~ayleigh's two volumes on the theory of sound [l] treat the stimuli arising fromvibratini 

! strings in detail. Since such stimuli arise from simple mechanical systems, their treatment in 
an information theory analysis should also provide a simple description. The physics of 

/L/LP- 77 vibrating strings is based on a wave equation of two degrees of freedom and the question 
arises: how can the information produced by a system describable by a wave equation be 

cuer., + f?' compared and contrasted with that produced by a system describable, e.g., by an equation of 
one degree-or n-degrees-of freedom? This paper presents a general solution to the 
problem. 

First, however, let us distinguish our approach to information theory from that of Shannon. 
Shannon's work [2] involves the resolution of uncertainties concerning final outcome in 
the face of a repertoire of possible occurrences, these occurrences possibly varying in their 
probability of occurrence. The accent is on hypothetical transmission of events defined 

ri abstractly, so that a temporal aspect is given to the theory. Thus, his work may more properly 
be termed transmission theory-to distinguish it from information theory based strictly on 
energy distribution-a distinction he was aware of. This paper will not be concerned with 

% this latter type of information theory but rather will address the analog information theory 

'$ 
of Gabor [3]. 

ARGUMENT 

We shall commence by defining a signal completely in Hilbert space. The complex numbers 6 a and /I are defined so that /? is the complex conjugate of a: 
"4 
I a = Af.At +yo.t0, 

p=Af.At-]&.to, 
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where AA signal bandwidth, and At, signal duration, are reciprocally related for a minimum 
value by the uncertainty condition, 1 tt 

Af.At = 112. tc 

[3,4] andfo, the average signal frequency, and to, the average period, are related by the lo@pl i 
relation, fo. to = 112 for a minimum value. A signal is the inner product aa* in subspaces 
M ,, M2-spaces square summable and defined by I 

H =  M,.M2. (3) 

Space H is a Hilbert space. Such a signal is a bilinear functional on the spaces M, and MZand, P 

by the uncertainty condition stated above, is symmetric. 
Now, the signal bandwidth x duration uncertainty product defined as the minimum 

information quantum or logon-Af. At = one logon at the minimumvalue of 112 [ 3 m n ,  for 
example, be used to represent the output of a system described by a differential equation ofthe 

where fo = ( 1 / 2 n ) d m ,  Af. At = ( a / 2 n ) m ,  and e-a expresses the change in energy 
discernible by the system. 

I would like to emphasize that the expression for Af.At makes no reference to the system 
parameters but only to the energy resolution parameters: ea and a. Clearly, these parameters 
may be related in any way to any system considered, in which case this simple expression for 
Af. At used in equation (4) will represent summed effects and hide the unique relation of the 
energy resolution parameters to parameters of the system considered. 

A system such as that of equation (4) has but one degree of freedom, and from the above 
consideration an information analysis of the signals producible by it can be represented as a 
set of numbers in Hilbert space. We shall now turn to vibrating strings which are systems of ' 

more than one degree of freedom and for which a more complex analysis is needed. h 
By a theorem of E. Schmidt [6, p. 2431, every function, say A(x, y), whichis square summable f 

and symmetric can be developed, in the sense of convergence in the mean, into the series 
- 

A(x,y) = 2 1 Pl$(~)l $L(Y), (9 i 
where $,(x) denotes the orthonormal sequence of characteristic functions and p, the sequence 
of corresponding characteristic values of transformation A generated by the kernel A(x,y). 

b 
In the case of a vibrating string, the plane (x, y) is the plane of vibration; the string is assumed 
fued at the points (0,O) and (1,O) and the string's movements described by a function, y(x,t). 
The specific analysis is as follows. 

The second-order differential equation describing the behavior of a vibrating string is the 
wave equation, 

a 2 ~  1 a2y -=-- 
ax2 C* at2 ' 

a solution for which is 
y(x, t) = 2 , (a,cosp. t + b, sinp, t) u,(x). 

We shall show that the expressions L (ancospnt + bnsinpnt) are characteristic functi0.s 
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From the consideration that the function y(x, t) corresponds to the movements of which 

the string is capable in the time interval 0 > r > T, it may be defined with respect to its ability 
to make the following integral stationary [6]: 

related for a minimum . .  . 
. . 

ire related by the logical 
)duct aa* in subspaces 

where 
I 

~e spaces M I and M2 and, 

:fined as the minimum 
lalue of 112 [3]--can, for 
iferential equation of the 

is the kinetic energy of the string, 
I 

is the potential energy of the string and h ( x )  is the mass borne by the segment (0,x) of the 
string. A function r](x,t) is defined satisfying the limit conditions: ~(x ,0)  = 0; q(x,T) = 0. 

Therefore, equation (8) is redefined: jes the change in energy 

reference to the system 
:learly, these parameters 
his simple expression for 

h e  unique relation of the 
:d. 
[om, and from the above 
.t can be represented as a 
ngs which are systems of 
oalysis is needed. 
which is square summable 
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and by equation (9, y(x,t) may be defined in the metric of Hermitian (and Hilbert) spaces 
D and H, if x and t are symmetric: 

~ ( x 7  t) = 2 ck(t) uk(x)7 (I2) 

Ii can be shown that the coefficients 

ck(t> = (Y, uk), 
and 

:tiom and p, the sequence 
!ted by the kernel A(x, y). 
:ion; the string is assumed 
,ibed by a function, y(x, t). 

are related : 

By redefining the function ~ ( x ,  t) satisfying the limit conditions, 
3f a vibrating string is the 

where y,(t) is a function which is zero at points t = 0 and t = T, and possesses a continuous 
derivative, but is otherwise quite arbitrary, equation (1 1) may be written as 

:e characteristic functions where 
c,(t) = an cosp, t + b, sinp, t. 
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These functions c,(t) are characteristic functions and have a representation in the metric 
of the Hilbert space D. The characteristic functions, uk(x), of equation (12) are an orthononnal ' 

sequence in the space Hand if the string is homogeneous they satisfy the differential equation 

- 
We shall now turn to information representation in general. 

1. 
Any system gives rise to an energy distribution of information in which the triple product H 

of resolution limits, U, is defined in the form 

AE Af At u=- - - (21) Eo'fo'To' 
(1 

ti 
where AE is the least energy change resolved by the system, Af is the least frequency change @ il 
resolved by the system, At is the least time interval during which the system is capable of d 
changing its energy storage, Eo is the initial amount of energy stored in the analyzer,f, is the 
natural frequency of the analyzer and To is the natural period of the system. ( 

Such a triple product is the volume of a region within which no change of state may be t 1 
observed. U is called the indication limit [7]. The uncertainty relation is , "2 

J 

A ~ A ~ = ( ) " . (  7, EO 
I - AEIE, )'l2ln( 1 - AEIE, ) .  (22) 

The definition of information "quanta" in terms of equation (22) is based on the response of 
t 

any system or analyzer which exhibits oscillatory behavior. We shall show that for vibrating e 
strings it is a haIf truth.t 

The system's information response defined by equation (22) has one degree of freedom as 
far as defining the number of logons is concerned: i.e., the right-hand side only is taken into p 
consideration. The representation expressed in equation (12), on the other hand, is thesolution 
to a wave equation and has two degrees of freedom. It is evident that whereas a description p 
of the distribution of energy (by the Af. At relation) in a system of two degrees of freedom will , 
also have two degrees of freedom to vary, a description of energy in a system of one degree 
of freedom will have but one degree of freedom to vary. As information theory is basically a k 
description of energy distribution (although not of absolute energy amounts), equation (22) 
represents a summed result. Thus, corresponding to the characteristic functions uk and ck of 
equation (12) we have (Af.At), and (Af.At), [and equation (22) applies to Ci (Af.At),J. 
Since y(x, t )  = 2 ck(t)uk(x) is symmetric, or (if the complex case is studied) Hermitian, it is 1 - 
evident that (Af. At), = (Af. At),, and furthermore, fo, =foe and to, = to,. Thus, the preceding 
general information analysis in Hilbert space has two representations in the case of vibrating b 
strings. This conclusion has interesting implications for the physics of hearing as the function 
of the cochlea i: a hydrodynamic problem, whether the function describing the system is 
symmetric or not. h YL 

In what way, for example, will the cochlear response to (i) y(t) = ck(t), (ii) y(x,t) = 

ck(t)uk(x) and (iii) y(x,y, t) = ck(t)uk(x)vk(y) differ? As Af. A t  = 112 = 1 logon is based on 
energy resolution parameters alone [equations (4) and (22)], at first blush there would appear 
to be no difference. Yet the restriction that 2, Af, . At, cannot equal less than 112 (which is one 
logon) does not stipulate how the minimum energy resolution parameters may be displaced 
or related among parameters of the system. 

Thus in case (i) we might have (Af.At), = C, (Af.At), = 112 for a minimum value. In 
case (ii) we might have (Af. At), + (Af. At), = 1, (Af. At), = 112, for a minimum vtue, 
where (Af. At), =A  and (Af. At), = &; or, (Af. At), = and (Af. At), = &; or any other 

t The arbitrary nature of basing an information system on a second-order differential equation was, of 
course, recognized by Corliss 151. 

e 
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combination, provided 2, (Af. At), = 112. In case (iii) we might have (Af. At), + (Af. At), + 
(df.At), = 2, (Af.dt), = 112, for a minimum value where (Af. At), = & and (Af. At), = 

(df.At),=+; or, (Af.At),=* and (df.At),=(Af.At),=+; or (Af.At),=& and 
(Af.At), = (Af.At), = 3; or any other combination, provided 2, (Af. At), = 112. A similar 
argument applies to the relationf,. to. 

One can continue the explanation on into physiology: at the basilar membrane a traveling 
wave occurs with auditory stimulation which peaks at a place corresponding to the frequency 
of that stimulation. This peaking of the traveling wave is presumed to excite mechanically 
hair cell receptors. Thus, a Fourier transform is performed on the incoming signal. In cases 
(ii) and (iii) the center frequencies,$,, of each (Af. At), may differ. Then different places on 
the basilar membrane are excited; yet when 2, (Af. At), = 112, i.e. its minimum value, the 
information content would be similar. Even when not at its minimum value, the different 
dispersions of excitation would still be related to similar amounts of information. 

The eigenvalues of the system in which the energy of the signal was first stored or dispersed 
(prior to transduction through the air) reflect more accurately the true situation at the 
basilar membrane. Suppose, for example, that in case (ii) (Af. At), + j a .  to), = (Af. At), + 

jCfo.to),= 1/2+j1/2 (i.e., ~,(Af.At) ,+j(f , . tO),=1 +j l ) ;  then.acar=1/2and a,a:,=1/2 
and 2, a, a: = 1. Let us suppose, as an example, thatf,, = 4 kHz; then to, = 125 ps, Afc = 

1000 Hz and At, = 500 ps; iff,, = 8 kHz, then to, = 63 ps, Afu = 2000 Hz and At, = 252 p. 
Compare this case with (Af. At), + j(f,. to), = + j+ and (Af. At), + jCfo.to), = + + j+ 
[i.e., 2, (Af. At), + j(f,. to), = 1 + j l  as before]. The situation is different yet the number 
of logons is the same. But in the second instance 2, a, a: = $, whereas this measure was 1 in 
the first instance. Similar arguments exist for differences between symmetric functions of 
differing degrees of freedom. 

The Hilbert space measure, ma* of equation (I), is a measure of energy distribution in- 
homogeneity and will reference the number of degrees of freedom in the equations describing 
the system producing a signal as well as summed information measures. The Hilbert space 
measure will thus distinguish between the timbre of, say, a trumpet and a violin, as well as 
between a violin and a cello, because the equations describing such systems differ in the 
number of degrees of freedom involved. More importantly for physiologists, such a measure 
will correlate with events at the basilar membrane. 

The general conclusion is thus: for a system of one degree of freedom there is only one 
phase to the Hilbert space representation; for a system of two there are two phases; for a 
symmetric function y(x,y, t) = 2 ck(t)uk(x)ok(y) or y(x,y,t) = y(t,y,x), there are three, and 
so on. As far as information is concerned, a machine can be defined by the way it distributes 
energy introduced to it. 

Finally, the observation can be made that whereas Wiener's [8] signal analysis proceeded 
from circular functions to Fourier analysis and then to spectral analysis, due to the above 
considerations, it is, perhaps, a more basic sequence to commence with energy distribution 
considerations of the system, proceed to signal definition and thence to a Hilbert space 
representation. A spectral analysis in Hilbert space is readily available [9]. As signal 
representation in terms of equation (I) is more complete, the latter sequence seems to be more 
fundamental. 
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