
D- 1;>-1

Are Neural Spike Trains Deterministically Chaotic or Stochastic Processes?

the Dynamics of Spontaneous Neural Interspike Intervals

Min Xie, Karl Pribram, and Joseph King

Center for Brain Research and Information Science
and Department of Psychology

Radford University, Radford, VA 24142

Abstract

Before examining neural interspike intervals to see how they might encode information,
an essential question that has first to be answered is whether, under the unstimulated
condition, the apparent randomness of the neural firing paltern renects deterministic chaos
or a stochastic process. Here, we use short term predictability and the structure of the
prediction residual to determine the dynamic characteristics of interspike intervals. As

demonstrated in given computer simulations, unlike stochastic processes, deterministic
chaos is highly predictable in the short term by linear and I or nonlinear prediction
techniques. interspike intervals recorded from somatosensory cortex and hippocampus
were, thus, analyzed by using the same techniques. The results show that the neuml
spontaneous interspike intervals are poorly predictable in the short term, and the models
that best fit the interspike intenals are linear (AR or ARMA) stationary processes.
Therefore, the pattern of neural spontaneous firing can be characterized as stochastic
ratber tban deterministically chaotic.

I. Introduction

One of the most pervasive enigmas regarding brain function is how information becomes
transmitted from one location to another. In view of the fact that nerve impulses are per se more
or less all or none in character, attention has been focused on the pattern of interspike, Le. inter
impulse, inter....als as the carriers of information. A. good deal of evid~nce has accmed to the effect
that in an anesthetized unstimulated brain, the interspike intervals recorded from single neurons in
a variety of locations are essentially random in their distribution. Models of the interspike process
have therefore been constmcted upon the assumption that this randomness reflects a stochastic
process. Stochastic resonance models [1, 2, 3] and stochastic resonance with noise models [4]
have been especially fruitful in simulating actual data obtained from spike trains. However
recording randomness does not in itself insure that a process is stochastic. Recently a surge of
interest has developed for the possibility that the behavior of spike trains, though random, could
be generated by a deterministic nonlinear process which results in chaos. The current project sets
out to test whether deterministically chaotic or stochastic processes best characterizes the patterns



of interspike intervals recorded from hippocampus and from somatosensory cortex in the lightly
anesthetized rat.

Deterministic chaos is defined as a process which can be described precisely by a deterministic
dynamic function. This detenninistic function generates an •unpredictable , bounded stable state
[5]. The 'unpredictability', here, reflects the fact that the system is not periodic, quasi-periodic, or
at equilibrium, Le. converges onto a point attractor. TIle definition highlights two important
considerations: The first is that the generator of the behavior is deterministic, even though the
behavior currently displays randomness. The second consideration is that the observed
randomness is not due to noise or interference from outside the system under observation; rather,
the apparent randomness is due to the internal properties of system, Le. its internal dynamics.
Furthennore, to be chaotic, its randomness must reflect the fact that the system is sensitive to
initial conditions, small perturbations, and the numerical errors caused by finite data length.

There is no widely accepted definition for stochastic processes. Any process will be called
stochastic if its behavior is unpredictable from available past infonnation. Instead of being
generated by a detennining function, the randomness of a stochastic system is due to possible
interference from outside of the system under observation, improper selection of observations, or
lack of knowledge about its coding structure. This ambiguity must not be reducible by improving
precision of measurement and I or computation. For example, the trajectory of the orbit of Uranus
was confusing before Neptune was discovered. The unpredictability in the trajectory of Uranus
could not be reduced by just increasing the precision of measurement and computation. Once the
interference from Neptune was taken into account, the trajectory became predictable. Thus, the
similarity between chaotic and stochastic systems is that both of them currently display random
behavior; the major difference is that chaotic randomness is due to an internally determinable
generator while stochastic randomness is not.

Furthennore as a result of the operation of a deterministic generator, the trajectory of a
chaotic process is structured while that of the stochastic process is not. The structure imbedded in
the trajectory will therefore be reflected in its prediction error (residual). Ideally, this error
reduction is unbounded when the frequency and precision of measurement and computation are
improved. This unbounded characteristic of the reduction of the residual is one of most important
measurements characterizing the chaotic process. In a stochastic system, the autocorrelation
function of the residual after all the past information has been removed is a delta function. Also, in
a stochastic system the variance of the residual will be much larger than that of the computational
error, and can not be significantly reduced by increasing the rate of measurement and improving
the prediction techniques.

ll. Short term prediction in a chaotic process

Accorcling to the above, to distinguish a chaotic process from a stochastic one, the current
output of a chaotic process must be predictable from immediately previous observations. This
characteristic is called short tenn forward predictability. The characteristics of the prediction error
(residual) is an important measure of the unknown process. Therefore, short term prediction
becomes the key to detennining whether an unknown process is chaotic or stochastic. When the
variance of the residual has been minimized, the structure of the process becomes exposed, thus,



whether the autocorrelation function of the residual is bounded or not can help to determine if the
process is chaotic or stochastic. TIlis section will describe and discuss some linear and nonlinear
techniques used in short term prediction. These techniques will, in subsequent sections, be used in
the computer simulations. TIle purpose of this section and the later computer simulations is to
demonstrate, in the final section, that short term prediction is a useful tool in analyzing the
dynamic properties of an unknown process such as those displayed by spike trains recorded from
brain.

In nonlinear system analysis, the infinite series expansion of a general nonlinear functionf(x) is
useful. If all the derivatives of the nonlinear functionf(x) exist, the functionf(x) can be written as

the following infinite series (the Taylor expansion) , expanded at x=xo'
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is the value of the kth derivative of nonlinear function f(x) with respect to x

evaluated at the point x=xo' Clearly, if Llx = Ix - xol is small enough, or x is near xo' then,

Ax l
:::; 0, for all k ~ 2. In equation (1), the sum of the terms of the second-degree and higher

degree of (x - xo) are negligible compared with the sum of the first two terms, thus, f(x) in the

vicinity of Xo can be represented as following linear form

f(x) ~ f(xo)+~L•• (x- xo); (2)

for Ax =Ix-xol < B« 1.

Equation (2) is the linear approximation of nonlinear function f(x) within the vicinity of xo'

The first derivative dfl ' the slope of linear approximation representation of f(x) , is a function
dx %=%0

of xo' If x is a function of time t, and t is discretized by a sampling operation, Le.

t=n.1t, n=O, 1, 2"", and x(n)=x(nt1t), the dynamic trajectory yet) =f(x,t), at t=(n+l).1t,

can be derived from equation (2) by

yen + 1) = f(x n , n6t) + f'(x n , nt1t)(xn+t - x n )

=y(n) + f'(x n ,nt1t)(xn+\ - x n )

(3)



where x" =x(n~t), and f'(x",n~t)= dfl . The derivative f'(x",n~t) in equation (3) is time
dx x=x..

varying. Thus, a nonlinear function y(t)=f(x,t) can be treated as a time varying linear dynamic
equation proposed in equation (3).

This approximation usually works if xII+1 is close enough to x"' or, equivalently, if

~ = IX"+I - x,,1 is small enough in which case higher degree terms can be negligible. Therefor, to

get a good approximation, the sample period ~t has to be small enough to satisfy the condition

that ~J: =0, for all k ~ 2.
Equation (3) can be rewritten as a difference equation, Le.

(4)

which is a first order autoregressive moving average process (ARMA(l,I)) for a one dimensional
dynamic system (single variable system). More generally, a nonlinear multidimentional dynamic

equation (multivariable dynamic equation) Y = F(X,t) can be represented approximately as a

linear time varying ARMA(p.q) process. Based on the dynamic model been constructed, the

immediately future state Yhl can be predicted by using the present and previous observations.

There are many different linear prediction methods, such as the autoregressive process (AR),
the moving average process (MA), and the autoregressive moving average process (ARMA) [6].
Sometimes the "seasonal" model is also useful in predicting the behavior generated by a
combination of slow and fast dynamics. All these estimators are called linear parametric
estimators; they assume that the unknown system can be described by a linear difference equation,
a discrete form of a linear differential dynamic function. The advantage of the linear estimator is
its simplicity. These techniques have been well developed and successfully implemented in solving
practical problems. The disadvantage of the linear estimator is that chaotic dynamics are strongly
nonlinear and thus require a high sampling rate or frequency of observation. Meanwhile, the
tracking rate of the linear estimator, known as the convergence rate, must be faster than that of
the unknown dynamics.

To handle the above problem, a piecewise linear model can be realized by using a sliding data
window for parameter estimation. 'TIle narrower the sliding window is , the shorter the linear
pieces, and the faster the estimator can track. However, the tracking accuracy of the estimator is
related to the variance of estimation, which is related to the total number of samples obtained. If ,
itl itll0isy situation, the sliding data window is too narrow, the variance of the estimation will be
increased dramatically. The prediction error will contain a great deal of estimation error caused by
noise. Therefore, the linear techniques are limited to those slow dynamic processes, mostly
continuous cases. For fast chaotic dynamics, especially the discrete chaotic process, nonlinear
techniques are needed to get good results. TIlese techniques are usually more sophisticated than
the linear techniques and also more computational intensive.

Unlike tlle linear parametric estimation techniques, the nonlinear methods are usually strongly
related to tlle nonlinear model selected. If the structtlre of a dynamic function is known, and there
are only a few unknown parameters in the function, then the least squares methods can be used to
estimate these parameters. However, if the structure of the dynamic function is unknown, the



reconstruction of the dynamics from previous observations will be more difficult than the linear
methods.

One of promising nonlinear modeling methods is to assume that the nonlinear dynamic
function, y=F(X), can be decomposed as a linear combination of a set of basis functions, Le.

N

Y =F(X) =L,A/cI>j(X)
/=1

(5)

where cI>/(X), i = 1,2,...N, are called basis functions, and Ai ; i=I,2, ...N, are the coefficients or
weightings assigned to the basis. The present output of the dynamic is yet), and the set of

previous observations called the input vector becomes X = (XI' x2 ' ... ,x,,). The function FO
defines a projection from the input domain to the output domain. Once the basis is selected, given
a set of sample input vectors and their outputs, the unknown function can be reconstructed by
estimating the parameters in equation (5). The estimated function gives the 'best fit' to the given
samples, and a 'reasonable estimation' in the region between samples.

The success of the method is very much dependent on the selection of basis functions. Here, a
radial basis function interpolation network (RBF network) [7, 8] is chosen as a nonlinear
estimator to predict the behavior of the unknown process. The idea of radial basis function
interpolation is to use the radial basis function as the basis in equation (1), such as a Gaussian
function defined by

(6)

where Cj = [ci ' c2 , ••• c" ] is the center of base cI> i (X); ai is the expansion parameter of Fi(X); and,
IIX-Cill is the Euclidean distance from X to the center Ci. To simplify the problem,

a i' i = 1,.··, N are usually selected as the same constant value for the basis, which are equal to

the maximum expansion of the input dynamic region. TIle center position Cj is selected according

to the location of samples. A robust method referred to as orthogonal least square (OLS) [9] can
be used to select the center from the input vectors and to compute the weighting coefficients. The
interested reader can obtain the details of technique from the listed references.

m. Computer simulations

The computer simulations are designed to demonstrate the performances of linear and
nonlinear methods in predicting the chaotic process, especially, to expose the characteristics of the
residual, which is important in determining the dynamic properties of an unknown process. The
examples are all chaotic processes. One is a continuous dynamic process generated by the Lorenz
equation, and the other is the discrete process generated by the Henon equation. Both the linear



and nonlinear techniques are tested in the computer simulation.
In the first computer experiment, the Lorenz equation is defined by

dx
-= a(y-x)
dt
dx
-=xz+ax-y
dt
dz
-=xy-pz
dt

(7)
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where a., pand a are constants. Chaotic solutions of the Lorenz equation are presented when a. =
28, P= 8/3, a = 10 [10]. The Lorenz equation is a third order nonlinear differential equation
whose phase plane is three dimensional with variables of x(t) ,y(t), and z(t). Figures (la) and (lb)
give the phase plane plot of the Lorenz equation and the trajectory of x(t).
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FIgure 1. (la) the trajectory of the Lorenz equation; (lb) the time waveform of x(t) variable

In the simulation, a third order autoregression (AR) forward estimator was used to perform a
one step forward prediction. The parameters of the AR model were continuously estimated by the
Burg algorithm [11] with a sliding window of 100 data points. The estimated trajectory shows
(Figure 2a ) a good match to the real trajectory (Figure 1b). The variance of the prediction error

eft) is about 5.4794 x 10-5
• Studying the prediction error eft) (Figure 2b), its autocorrelation

functions are not a delta function (Figure 3a). It has a relative long tail slowly cut at about a time

lag =40, which indicates that the prediction error contains information about the past which
could be further removed by the predictor. Moreover, comparing eft) with the original dynamic
trajectory x(t), we can find that the prediction error shows a structure identical to that in x(t).
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Figure 2. (2a) the forwnrd prediction of x(t) by using the Durg nlgorlthm. (2b) the resldunl of

the Durg estimation.

To further explore the structure of the residual, we plot the normalized residual together with
the normalized Euclidean distance which is measured from the trajectory position [x(t),y(t),z(t)] to
the hyperbolic point of the Lorenz equation ( Figure 3b ). The diagram shows that the closer the
trajectory is to the hyperbolic point, the larger the prediction error will be after immediately
passing the vicinity of this special point. The fact that the hyperbolic point is an unstable
equilibrium point which separates the attractors and their dynamic basins (in the phase space)
brings about the uncertainty of chaos. Like an ideal rigid ball dropping on the top of an ideal
needle, the closer the ball approaches to the center of the needle, the more sensitive its trajectory
is to its initial conditions and perturbations. To determine exactly a future trajectory, inftnite
precision of measurement and computation are required. That is, if we can make our estimator
infinitely accurate, the prediction error reduction becomes unbounded. As noted, this is important
in distinguishing a chaotic from a stochastic process.

The same Lorenz trajectory is used to test the nonlinear prediction model. The total number of

bases used in equation (5) is 20. T!:e variance of the prediction error is 3.2485 x 1G~, which is
about 20 times lower than that obtained with a linear predictor. Comparing the residual obtained
with the nonlinear estimator (Figure 4a) to that of the linear one(Figure 3a), there are some
similarities; however, the residual of the nonlinear estimntor is much smaller than that of the linear
predictor. Furthermore, the autocorrelation function of the nonlinear prediction error (Figure 4b)
shows a long tail, which suggests that the information contained in the residual is still attributable
to the history of its processing. This indicates that the prediction error can be further reduced by
improving the numerical precision and the performance of the estimation. This also is important
evidence that an unknown trajectory is chaotic.
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FIgure 3. In (3a), the dolo; are estImated autocorrelation coefficients of the resIdual by usIng Burg
algorithm, and, the dashed lines are the ± 2 times standard devlnatlon of the estimation•. In (3b), the

soUd line Is the normalized Euclidean dIstance from the hyperbolic poInt of the Lorenz equation to
the present trajectory x(t), and the dashed line Is the present resIdual power.

In the second computer simulation, a discrete chaotic dynamic equation is used. The dynamic
function is called the Henon equation [5] defined by

y(n) =c +ay(n-1) +by(n- 2) (8)

By selecting different parameters of (a , b , c), the above difference function can demonstrate
periodic, unstable, or chaotic behaviors. The parameters are selected in our simulation as c=1, a=
1.4, and b=0.3 to place y(n) into a chaotic region. Figure (5a) and (5b) show the dynamic
trajectory yen) and its input vectors in an input vector space defined by y(n-I) versus y(n-2). In .
physics, this input vector space is also called a phase space, and the input vector plot in Figure
(5b) is called the return map of the Henon equation. In the simulation, a linear forward predictor
was used to develop the discrete trajectory yen). The orders used in the autoregressive model
were 2, and 4. Both results demonstrated large prediction errors, whose relative varianc.e~ were
0.7150, 0.6368 respectively. Here the relative variance is defined by the variance of residual
divided by the variance of unknown process yen), it is a ratio that measures the percentage of
unpredictable information. The results indicate that about 72% to 64% information in yen) is
unpredictable, especially, increasing the order of the linear predictor does not improve its
performance if the residual is caused by nonlinearty.

Next, a radial basis function nonlinear predictor was used to analyze the dynamic of the
Henon equation. The number of the basis used was 11. The original y(n) and its estimation totally

overlap. TIle relative variance of the residual was 9.6623 x 10-10
• Both the residual (Figure 6a)

and its autocorrelation function (Figure 6b) show a white noise pattern. The future states of the



yen) are almost predictable from the past, and the unknown process is detenninistic despite the
fact that the trajectory itself looks random.
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times standard deviation of the estimation.
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IV. 'fhe analysis of the interspike intervals

In the previous sections, both the linear and nonlinear methods have been delineated for
detecting a chaotic process. TIle computer simulations showed these methods to be promising in
modeling chaotic processes. The structure embedded in the prediction error was shown especially
useful in testing the low bound of the estimation. This estimation can, then, be further used to
discriminate a stochastic process from chaotic dynamics. In this section, these techniques will be
implemented in an analysis of interspike intervals. The experiments are designed to model the
interspike interval both by linear and nonlinear methods. The questions to be answered are: First,
whether or not the interspike interval can be modeled as being generated by a deterministic
generator. Such a model would show (or not show) a short term predictability of the unknown
process. Second, would such a model be linear or nonlinear? Only those processes which proved
lV be llonlinear and shurt term predictable would be classifiable as chaotic. ..

The raw data were collected from anesthetized ( with barbiturate) rat somatosensory cortex
and hippocampus. The records are of spontaneously firing neural units ( there is no stimulus ).
Records of raw data were obtained by means of a Grass Model P5 preamplifier with an FET
cathode follower. The recorded signal was band limited between 300 and 3000 Hz and amplified
with a gain of 20,000. One hundred seconds of continuous voltages were sampled at a rate of 32
kHZ and stored by a BRAINWAVE system onto a PC-486 based computer. The raw data were
then transferred for processing to a Silicon Graphics workstation. The units were sorted by a
template matching program. TIle templates are histograms composed of the peak to peak:



amplitude and descending slopes of all units in a recording. Individual units were matched to one
of the several templates obtained in this fashion from each recording.

Records from 12 rats were used. Twenty three units were obtained from 7 hippocampal
recording; 12 units were obtained from 5 somatosensory cortex recording. Figure (7a) gives a
typical interspike interval record from somatosensory cortex. The mean value of the inter spike
intervals is 115 ms , with a standard deviation of 86.65 ms .The interspike intervals appear to
occur randomly but they also show a tendency to group at 50 to 125 IDS. However, about every
15 to 20 intervals, the interval will suddenly increase to the level of 300 to 400 IDS, and to
oscillate a few times before returning to the lower base line. The autocorrelation functions ( figure
7b) at lag =1, 2 are higher than the 95% confidence level. There are also some seasonal changes
although these are below the 95% confidence level. The partial correlation function drops

abruptly at lag>1, and and it approximately equals to 95% level at lag 17.
A seasonal autoregressive model was constructed from one recording of the somatosensory

spike-trains according to the autocorrelations and partial autocorrelations. The model equation is

(9)

where B l is a k steps delay operator, ern) is the excitation noise of the process or residual of the
prediction, and [at, a2 ] are the unknown parameters of the model. The estimated results are

or
(1 +0.5092B)(l +0.2924B t1 )y(n) = e(n)

y(n)-0.5092y(n-1)-0. 2924y(n-17)+ O.l489y(n -18) = e(n)

(lOa)

(lOb)

Figures (7c) and (7d) give the one step forward prediction error ern) and its autocorrelation
function. The variance of the residual is 5425.9 (the stand deviation = 73.66). All the
autocorrelation functions of the residual are below the 95 confidence level at lag> O. The T ratio
test for the estimated parameters in the equation (lOa) are 5.87 and 2.7 respectively. Moreover, a
sliding window of 100 interval points was applied to the interspike intervals; the estimated model
parameters keep almost the same values as the window moves across the records.

Next, the nonlinear radial basis function estimator was applied to the same record. Fourteen
bases were used in reconstructing the recorded interval train; the variance of the residual, and its
autocorrelations were identical to the those obtained with the linear estimators.

The rest of the interspike intervals recorded from somatosensory cortex were processed using
the same techniques. Most of them can be modeled as a fITst order autoregression function plus
some seasonal effects at seasonal intervals of 7 to 17. Only 3 out of the 12 interval records from
somatosensory cortex can be modeled as a fITst order autoregression model CAR(l)) or Hrst order
autoregression and fITst order moving-average model (ARMA(1,I)) without a seasonal period.
The relative variance of the residual and the original interspike intervals was 0.914 in the linear
prediction cases and 0.903 in the nonlinear cases, which means that less than 10 percent of the
information in the interspike interval can be predicted according to previous observation.



The results indicate that the interspike intervals of the somatosensory cortex can be modeled
as a time invariant (stationary) linear autoregression process under the condition of no
stimulation. Only a very low percentage of the infonnation at any interval can be predicted from
previous intervals. Such a process is not chaotic but stochastic.
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FIgure 7. (7a [top left] ) gIves an example of Intersplke Intervals recorded from somatosensory

cortex. In (7b [top rIght)), the soUd tine Is the estImated autocorrelation coefficients of Intersplke
Intervals In (7a), and dashed tines are the ± 2 times standard devIation of the estimation. (7c [bottom

left] ) Is the resIdual of forward prediction of Intersplke Intervals, and (7d [bottom rIght] ) Is the
estimated autocorrelation coefficients of the resIdual and ± 2 times standard devIation of the

estimation drawn as sotld line nnd dashed tines respectively.

Figure (8a) gives an example of interspike intervals from hippocampus. As some units fIre in
bursts, only the fIrst spike in a burst was sorted, so that the interspike interval becomes the inter
burst interval (assuming that the unit is related to the burst). The same prediction methods as
those used for analyzing the recordings made from somatosensory cortex were applied to the 20
different units obtained from the hippocampal records . The typical autocorrelation function
(fIgure 8b) and partial autocorrelation functions were cut abruptly at lag = I or 2. which is almost
white noise. There is no seasonal tendency found in any of the hippocampal records: The first
order or second order autoregression functions provide excellent models of the processes. The
autocorrelations of prediction errors occur also as white noise. The relative variance of the
residual and the interspike intervals per se are both about 0.974 for the linear estimator and 0.967
for the nonlinear one. These results indicate that the hippocampal interspike intervals are even
more unpredictable than those recorded from somatosensory cortex. Both are stochastic.
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Figure 8. (8a (top left1 ) gIves an example of Intersplke Intervale; recorded from hippocampus. In
(8b [top right]), the solid tine Is the estimated autocorrelation coefficients of Intersplke Intervale; In
(8a), and dashed lines are the ± 2 times standard deviation of the estimation. (8c (bottom left] ) Is the

resIdual of ronvard prediction of Intersplke Intervals, and (8d (bottom rlght1 ) Is tbe estimated
autocorrelation coefficients of the residual and ± 2 times standard deviation of the estimation drawn

os solid line and dnshed lines respectively.

V. Conclusion

1 Methods have been presented to distinguish chaotic from stochastic processes. These
methods are based on short term predictions and the characteristic patterns of the prediction
error. Computer simulations provided evaluations of the techniques when applied to known
chaotic processes. When applied to real interspike intervals, the analysis showed that none of the
interspike intervals could be modeled as a chaotic process generated by a deterministic function.
Instead the results showed almost no predictability in the records, indicating the unstimulated
interspike intervals to be essentially stochastic.

2 From an information transmission point of view, the more of a current process that can be
predicted from previous observations, the less information can be contained in the current
process. As the chaotic process is short term predictable from previous observations, the
information obtained from any current sample would be small. If the train of interspike intervals
were a carrier of information in the brain, the efficiency of information transmitted would. be low
in a chaotic mode. Only the less redundant stochastic process, i.e. a white-noise-like process can
possible carry and transfer large amounts of information. Our data show spike trains to be open
to such large amounts of information transmission.
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