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Some Methods for Dynamic Analysis of the Scaip
Recorded EEG

Karl H. Pribram”, Joseph 5. King®, Thomas W. Pierce’, and Amanda Waren®

Summary: This paper describes methods for quanlifying the spatiotemporal dynamics of EEG. Development of these methads was motivaled

walching computer-generated animations of EEG vollage records, These animations contain a wealih of information about the patlern of char

acrnss lime in the voltages observed across the surface of the scalp, Inanelfort to quantifly this paltern of changing voltages, wu gloctod to vxtra
single yuanlifiable feature from cach measurement epoch, the highoest squared vollage among the various electrode sites. Nineteen channoels of ©
were ¢ollected fram subjects using an electrode cap with slandard 10-20 sysiem placements, Two minule records were obtained. Each recard

samplid at a rate of 200 per second. Thirty seconds af artifact-ree data were extracted from each 2 minute record. An algorithm then determ

the location of the channel with the greatest amplitude for each 5 msee sampl'mg cpoch. We quantifiud these spalio-temporal dynamics as seal:

veclors and cluster anatytic pluts of EEG aclivily for finger tapping, cognitive effurt {counting backwards) and relaxation to illusirate the utility

lechnigues.
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Introduction

In recent years some of the most promising ad-
vances in the study of brain/bebavior relationships
have come from an increase in the power of imaging
techniques (e.g., PET, MRI, EEG) that can be wused to
correlale human brain aclivity with cognitive, emo-

tional and behavioral processes. Of these, the recording -

of brain electrical activily (EEG or event-related poten-
tials), though the oldest method, has benefitted as much
as the others form the availability of powerful compu-
tational platforms. For example, Paul Nunez and oth-
ers, reviewed by Nunez (1995), have been able to
increase the spatial resolution and determine phase
relationships among EEG placements by using
Laplacian mappings. Furthermore, Nunez has related
EEG mappings to linear and non-linear systems. Simi-
lar advances have been made for ERD analyses by Alan
Gevins, who has developed covariance patterns among
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experimentally isolated ERP events (Gevins and Cue
1995). Such mappings, produced by lines conyso
covariant ERPs, were shown to differ systematicall |
a function of fatigue during performance - - ‘or!
memory task.

Al present, the major mmeasures of brain :lect:
activity have one advantage over other im:, ~ |
niques -- that is, their potential for temporal resolul.
This potential is just beginning to be realized. 1.
Tucker, also using ERPs, has shownthata visual ' .m

evokes a positive occipital response (at approximat:

100 msec) and then a second occipital wave forr
"reprise” (at approximalély 300 msec) (Tuckeret al. 1
Tucker et al. 1995). Using EEG recordings, That"
(1994) has traced the development of coherence pafl
in children, and Lehmann (1990) showed that, in
absence of external stimulation, patterns of brain el¢
cal activily appear lo remain stable, on the average

about 200 msec and then change fairly abruptt wa.
paltern. Such dynamical analyses of successi  f b
electrical microstates open a whole new vista 1 st

ing brain/behavior relationships. Bressler {1994)
taken advantage of these new possibilities in deline:
portraits of intracerebral synchronization and b w
synchronizations vary over 80 and 240 msec periow
activily.

Advances in computer technology have enabt
our labor'atory and others (e.g., Tucker et al, 19943
generate animations of changing voltages acros-
array of electrodes over time. However, as not:-
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Tucker et al. (1994) these "animations tax computational
resources and pose new challenges for scientific com-
munication” (p. 151). Currently, the only technique
available for reporting findings based on these anima-
tions is to present a series of static images of the scalp
surface which represent the locations of peak activity at
different points in time. However, this method does not
* provide a gquantifiable means by which data obtained
under different task conditions can be compared.
'Theref_ore, we have altempted to develop a way of
quantifying the spatiotemporal dynamics of the EEG.
The approach reported in this paper is based on map-
ping changes in the location of a single feature of each
measurement epoch across time, the highest squared
voltage. This approach retains the excellent temporal
‘resolution available in EEG, while focusing attention in
the spatial domain on one elecirode location per meas-
urement epoch.

Initial representations of the "path” of the htghest
squared voltage indicated that the Jocation of this fea-
ture changed rapidly (over 50 times per second). Our
term for a change in the location of the highest squared
voitage was a "switch”. The "path” of the highest
squared voltage over time was thus called the "switch-
ing” pattern, and the number of changes in location per
second became known as the "switching rate”. How-
ever, it quickly became clear that our use of the term
switching was misleading, because it carried the clear
implication that a change in location of the highest

squared voltage reflected the controlled movement of a
signal from one location within the brain to another.
Other laboratories have noted this problem in interpret-
ing information regarding changes in EEG activity over
time. For example, Tucker et al. {1994) stale that "Inter-
preting the shift in the N1 as actual movement of the
elecirical field could of course be misleading; sequential
negativities: over different regions could produce ap-
parertt motion” (pp 141-142).

In order to avoid the implication that changes in the
location of the single highest squared voltage reflect the
presence of a continuous wave across the scalp, we chose
the term recrudescence as a label for changes in the
focation of the highest squared voltage, rather than the
term "swilching”. The term recrudescence, of medical
origin, describes a sequence of phenomena in which a
phenomenon "pops up” but does not directly "cause” the
phenomenon to appear at another location at a later point
in time. Qur use of this term emphasizes the "pop up”
aspect of its meaning. '

This paper describes two methods by which pat-
terns of recrudescence can be depicted graphically. We
also demonstrate the use of a statistical technique
known as Cluster Analysis in representing the spa-
tiotemporal dynamics of the EEG. The goal of all three

Pribrzmoet ol

methods is to provide measures of changing EEG volt-
age patlerns thal can be used in comparisons of differ-
ent groups of subjects and different task conditions as
well as in replications of work done in other laborato-
Ties,

Methods

- Dola Acquisition

EEG data were collected using 20 Grass M« iP5
A.C. preamplifiers feeding into a pc 486 compute: by
way of two 16-channel A/D converters. Ten channels
of each converter were involved in data acquisition.
EEG data were sampled at a rate of 200 per second for
120 seconds. Data acquisition and processing are con-
trotled by BrainScope, an in-house software pn-xage.
Electrodes were placed on the scalp using a standard
10-20 system with an. EEG cap (Electro-Cap Interna-
tional, Eaton, Ohio) referred {o both ears. Channel 201is
used to monitor eye movements for later artifact iden-
tification. and removal and does not enter further into
the data analysis. Dala sets are 30 second portions of
the original 2 minute record, converted from binary ‘o
ASCII format and transferred to a Silicon Graphijcs
worksiation for analysis. Data sets are arranged in a
matrix in which each of the 19 channels is represented
by a different row. Each of the 200 per second sample
epochs is represented as a column in the data matrix.
All algorithms used to calculate rate of change and i¢
complete the graphical representations are written a:
MATLAB functions. '

The methods presented in this paper are based on ar:
algorithm which delects and records the maximum value
and location (row) of the squared voltages for each 5 msec
epoch within the data matrix. The program then tracks
the changes in the location of maximum amplitude be-
tween EEG channels and between successive sampling
epochs. Finally, the changes in location are drawn onto
a circular figure, which represents a simulated scalp EEG
mapping surface. Data were collected during three con-
ditions, all with eyes closed. The conditions wer~ Re-

laxation (baseline), Counting backwards fror " by
threes, and right and left Finger tapping. Relax:  aand
Counting backwards resulted in the most ir' .rmative

use of our analyses, so only results from these conditions
are presenled in this report. In general, we have found
other techniques, such as coherence plots, to ! wore
useful in plotting brain electrical activity coordinate with
behavior, while our dynamic analyses show promise in
plotting brain electrical activity in subjectively experi-
enced states.

We examined our records over the whole range of
frequencies and separalely for the theta, alpha, beta and
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gamma ranges. When we checked Lhe gamma (10 11z)
range plots against plois of 50-70 Hz and even against the
70-90 Hz range, we were unable to discern any difference.
Therefore, these plots are not presented, as we could not
comfortably assume that pur gamma range recordings
were free from muscle artifact.

Rates of Recrudescence

Rates of change of maximum amplitude between
various electrode locations were obtained using an algo-
rithm that searches and detects the maximum value of
the voltage for each epoch in the data set. Asthis value
is detected, the channel number containing that voltage
is stored. The rate of recrudescence (appearance or re-
appearance of maximum amplitude in a different loca-
tion} is then calculated as the number of changes in
location of maximal voltage across successive epochs,
divided by the total duration (in seconds} of the record-
ing. As an example, assume Lhal the data set contains
5000 sampling epochs. The algorithm would, therefore,
record the maximum squared voltage and its location for
each of the 5000 epochs. It would then count the number
of successive epochs for which the location of the maxi-
mum squared voltage changed. Suppose that this was
300. Since 5000 samples at 200 samples per second rep-
resents 30 seconds of recording, the rate of recrudescence
would be 300 divided by 30 seconds for a recrudescence
rate of 100 per second.

Scalar Representiaiion of the Distribution of
Recrudescence

Changesinlocation of peak amplitude across succes-
sive 5 msec samples taken during a 30 sec record are
represented by lines (scalars) connecting any twa elec-
trode locations. These locations are plotted on a circular
diagram representing the approximate locations of the
electrodes on the scalp.  As the maximum amplitude
recurs between two locations, the line between (hose
locations is drawn thicker. Thus the lines connecting
electrode lacations show that the most frequent joint
sequence of maximum amplitude activity becomes
denser, :

Vectorial Representation of the Spaliol Dislribution
of Recrudescence

The scalar lines connecting the points of maximum
amplitude depict the successive points of maximum
EEG amplitude, but do not provide information regard-
ing the direction in which recrudescence is operating.
.For example, frequent recrudescence between F2 and T4
does not distinguish behween a voltage peak at F2 fol-
lowed by one at T4 and the reverse, a voltage peak at T4

followed by a peak at F2. As the utility of the dynamic

analysis is explored, we hope that an underlying process

that directs the rapid changes in ihe location of ampli-

tude will be discovered, As a first step insuchan . plo-

ration, a vector representation is constructed. which

provides a surface view of the direction of movement of
recrudescent maximum amplitude points. The purpose

of the vectorial display is to provide a graphic depiction

of quantitalive indices of directionalily in recrudescence

between clectrode siles. :

The display is based on a 19x19 matrix in which
rows are the 19 locations at any. one epoch, and the
columns are the same 19 locations at the next recorded
epoch. Cells along the diagonal indicate no change in
location of maximal voltage between successive 5 msec
epochs. Within this matrix, we simply count thenumber
of successive epochs in which maximum voltage
changed from one electrode to another. The total
number of such occurrences are tabulated in each cell of
the matrix. Therefore, the matrix constitutes a frequency
distribution of directionally specific recrudescent activ-
ity between clectrode locations. This frequency distri-
bution is represented as a contour diagram, which
accompanies each frequency matrix.

Statistical Analysis of Changing Voitage Patterns

Cluster analysis is a statistical technique that
groups cases together on the basis of similar profiles of
variables. Cluster analysis has been used in the context
of EEC research to assign individual subjects to clusters
on the basis of variables derived from one or more EEG
sessions (e g, John et al. 1992) or to assign segments.-of
EEG to clusters (e.g., Friedman and Jones 1984). 1n this
paper, we use cluster analysis to assign each "meastre-
ment epuch”™ to one of two clusters or proliles on the
basis of the pattern of 19 voltages obtained at each
epoch. The goal of these analyses was simultaneously
to take information from al electrodes into accor - and
to categorize the patterns of voltage changes over lime.,
We chose hwo clusters to represent the pattern of un-
squarcd vollage change -- that is, maxima and mi~‘ra
-- over lime nol just the voltage of a single eleci: e
(highest squared voltage) that was used to describe
recrudescence. This allowed the analysis to determine
differencues between two clusters with regard to the sign
of the voltage: (that is, positive or negative defléction
from baseline). The pattern of changes from one cluster
assignment to another over time could thus provide
information about the type of psychological activity
(e.g., relaxation versus cognitive effort) during those
portions of the record.

Twoseparate cluster analyses were conducted, with
twenty second records of unfiltered EEG obtained from
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Figure 1. Scolor represeniation of lwo different portions
(early ond lole} ond iwo dala set lengths {5.5 and 20.0
secs.} of the boseline condition: Figure 1a and b, lolal;
lc ond 1d, thela; and 1e and 1l beta.

bolh the Counting and Baseline conditions using the
cluster procedure available from SPSS (Statistical Pack-
age for the Social Sciences). Epochs in both conditions
were assigned to one of two clusters.

Resulis

Wilhin-Record Replication

The stabilily of our scalar and vector repre-
sentations with respect to the location of the epochs is
presented in figure 1, which shows scalar repre-
senlations of one subject’s dala from different portions
(early and late) and two data set lengths (5.5 and 20.0
sec) of the resting {(baseline) condition. Figures 1a and
1b represent total EEG; figures 1c and 1d represent
thela; and figures le and 1f represent beta activity.
Alpha activity gave identical resulls, emphasizing the
occipital region and is not presenied to conserve space.
Note the consisiency in the overall patlern of scalar
representalion as well as the similarily in recrudescence
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Figure 2 {a-1). Scalar representalions of recrudesce
Tolal gipha ond beto EEG during resling and co
backwards.

rate as both data set length and position in the «
record are changed. The only noticeable differ
that, as expected, the tracings are darker in the
records. Vector plots also showed this stability
samples taken at different times and within fre:
bands. '

Scalar Plots of Counting Experiment

Representations of the Jocation and armounto
descence during relaxation and counting backwar:
ditions are presented in figure 2 {(a-f). For toi
recrudescence rates for relaxation and countin
wards conditions were 116 and 109 per second,
tively.

Of interest in these plots are differenes betw
relaxation and counting conditions in the overall
of recrudescence among electrode loci ions. N
ticularly the "triangular” paltern among F7, T3 ~
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Figure 3. Makix ond meon vecior (contour) plols of recrudescence coresponding 1o the scolar represeniations of fi

?a and 2b. Baseline, 3¢ and 3b; Counting, 3c ond 3d,

tween right posterior and frontal areas {for example,
between O2 and F1). In the beta frequency band, the
original triangular pattern in the resting condition
spreads to include other frontal tocations during count-

ing.
Vecior Representations of Counting Experiment

Matrix and mesh vector {contour) plots of recrudes-
cence corresponding to the scalar representations of fig~
ure 2 are presented in figures 3 and 4. The highest values
in the matrix are often on the diagonal formed from the
lower left to the upper right of the matrix representations
of recrudescence. This indicates that most frequently

LI EEE R

Tl X Bt

q
thure is no recrudescence between adjacent 5 mse
oci:s.  “ur the contour plots the diagonals have
suppressed (set to zero} so that patterns created by rv ru-
descen: 2 will be more apparent.

Figure 3 (a-d) presents graphs of total EEG d
baseline and counting conditions and transforms th
in figure 2 to represent the direction of change in
mum amplitude belween pairs of electrede loc
The :¢presentation on the top is the matrix dir
wheraas the one on the bottom represents a twao-
sicnal frequency histogram (contour plot) of the
data, Tie diagonal which runs from the lower left. -
ta the u: per right corner serves as a reference for
the matiix representations. Symmetry about L.

-

R
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Figure 4. Malix and meon vector contour plols of recrudescence (or olpha aclivily corresponding to scolar
senlations of figure 2¢ and 2d. Bosetine. 4o and 4b; Counling. 4¢ and 4d. '

nal indicates an equal amount of recrudescence from
successive epochs between pairs of electrodes. The lower
left quadrant of the matrix represents recrudescence
among more frontal electrode locations, whereas the up-
per right quadrant represents recrudescence among
more posterior electrode locations. Note the frontal re-

cence among temporal lobe leads in the beta band -
rest, which changes to a more distributec pattern
counting.

CGlusier Representations of Counting Fxperim«

crudescence {(denoted by the light areas) in lotal EEG When measurement epochs ushing ansquan ol
during relaxation, baseline conditions in figure 3a. This ages were classified as belonging to either a fi
pattern {frontal recrudescence} persists during counting, second cluster, descriplive statistics indicated

but it is somewhat less concenirated within frontal areas. two clusters differed from each otherintermsof  s:. -
Similarly, in figure 4a and 4b, concentrated recrudes- of the mean vollages over time at eac)y electro
cence among occipital areas in the alpha band during Epochs assigned to Cluster 1 have mean voltage i« -7
baseline spreads out to other locations during counting. nineleen electrode sites that are positive. Clust: 2

Finally {figure 5a and 5b) shows concentrated recrudes- mean voftages at all nineteen electrode sites t-
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negative. No differences in the pattern of mean voltages
across electrode sites were observed between EEG re-
cords obtained in the Counting and Baseline conditions.

After each measurement epoch ivas assigned lo
either Cluster 1 or Cluster 2, plots of cluster assignment
for each measurement epoch were obtained for both the
Baseline and Counting conditions. Figure 6 displays the
cluster assignment for each epoch in a 500 msec sample
of the complete record during the baseline condition for
the same subject. Figure 7 displays the clusler assign-
ment (1 or 2) for each measurement epoch in a 500 msec
sample of the full 20 second record while ene subject was
counling. Visual inspection of both figures clearly shows
that periods of lime in which the rate of switching from

one cluster assignment to the other is slow (e.g., Epoc!
1-70 in figure 6 and Epochs 1-39 in figure 7) are inte:
rupted by periods in the record where the rate of ciste
swilching is rapid (e.g., Epochs 75-93 in figure 6 anc
Epochis 39-45 in figure 7). Visual inspection of the rate-
of cluster swilching in the baseline and counting r ~or¢
indicated that the frequency of very short cluuicr seg
ments {i.e,, portions of the record where less than fiv:
consecutive epochs re assigned to the same cluster) w:
higher in the Counting condition than in the Baselin
condition, This hypothesis generated by visual inspec
tion was submilted to statistical analysis using the Chi-
Square test as reported below.
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Rale of Cluster Switching

A program written in C+4 counted the number of
cluster segments at each possible length of asegment (i.e.,
theé number of consecutive epochs assigned to a single
cluster). Figures 8 and 9 display the percentages of the
lime in which each cluster Segment Length was encoun-
lered for the Daseline and Counting conditions, respec-
tively. A higher percentage of short cluster segments
{i.e., representing fast cluster switching) was present in

" the Counting condition than in the Baseline condition.
This observalion was confirmed by aChi-Square analysis

pribram el c

that indicated that the percentage of short ¢] or st
ment lengths (between 1 and 5 epochs in each clust

- segment) in the Counting condition was significant|

higher than the percentage of short cluster segments ir

- the Baseline condition (X?(1,32) = 5.2, p<.05). One quan

titative difference in the dynamical pattern of EEG vei.
age changes between two cognitive task conditions hn
thus been established. '
Figures 10 and 11 display values of the highes:
squared voltage over the same 250 msec samples of re
cord used in displays of the Cluster Switching rates fc
the Baseline (figure 6} and Counting (figure 7) condition:
Visual inspeclion of these and other portions of the com
pliete records for Baseline and Counting conditions ind
cates that slow rates of cluster switching are associatr
with higher squared voltages {e.g., Epochs 75-97 ‘or
Baseline condition and Epochs 39-45 for the Countir

Baseline
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Figure 8. Percenlage of Segments at Each Possi e Choe
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Figure ¥, Percenlage of Segments ot Each Possible Clusi
Segment Lenglh for Unfilered EEG During the Counti
Condition.



Dynamic Analysis of EEG

Highesl Sguared Vollage: BaseinoAtulillered EEG

=T T

7a0 o T - t T T

500 i

g & §

Squarag Vohage

g

n I PR N— e, " A A P— A n
Q 10 20 n 40 50 60 " 80 50 100
Maasuremen! Epoch

Figure 10. Highes! Squared Vollage at 100 Consecutive
measurernent Epochs for Unfiltered EEG During |he Base-
line Condiion.

condition). These visual observations were addressed
through statistical analyses using ANOVA, as reporled
below.

One-way ANOVAs were used to compare the mean
highest squared voltages for short cluster segments {(one
to five consecutive epochs in each segment) and long
cluster segments (30 or more consecutive epochs as-
signed to the same cluster). Separate ANOVAs were
conducied on data from the Baseline and Counting con-
ditions. When data from both the Baseline and Counting
conditions were examined, epochs in short cluster seg-
ments were found to have significantly lower highest
squared voltages M = 64.04, 31) = 67.44 for Baseline; (M
= 42.20, SP) = 24.26 for Counting) than epochs in long
cluster segments (M = 118.76, SD = 87.22 / F(1,1893) =
151,62, p<.05 for Baseline; M = 104.40, 8D = 68.64 /
F(1,2718) = 362.14,, p<.05 for Counting).

Discussion

The foregoing data illustrate the possible utility of
some methods of dynamic analysis of the EEG made
possible by recent advances in both hardware and soft-
ware computer technology. The various depictions not
only provide spatiotemporal images of EEG dynamics
but also provide the bases for quantification and sub-
sequent statistical analysis of the temporal course of EEG
dynamics.

To us, the most important and surprising finding of
this study is the rapidity of change in electrical pattern.
Recrudescence rates ranged from 60 to 170 per second.
Next, the technique showed that under the conditions of
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Figure 11. Highest Squared Voltage ot 100 Conseculive
Measurement! Epochs for Unfitiered EEG During the Couns:
ing Condilion.

the investigation, there were no clear cut sweeps of wave:
fronts across expanses of scalp. Rather the maximu:
squared potential "popped up” in one focation and thet
in another totally different location over time. Recrudes-
cence rates and the scalar diagrams thus provided ar
initial quantification of the speed of change a: 1 spai.
distribution of EEG activilty, respectively, The satterr.
so generated atlow for quick and accurate (as accurate a:
the particular recording technique will altow) compari
sons of spatial dynamics between mdlwdu:\ls or betwer.
experimental conditions.

The vectorial representations provide informatios
on the directionality of recrudescence between all pairs
of electrode locations. 1t is informative that most ofter
for the sample rate of 5 msec used in our studies th:
tocation of highest squared voltage does not change
across successive sampling epochs. With the diagonai
formed by this lack of change in the record as a baseline,
we can also obtain a picture of directional relationship:
between all electrode locations. Sample rates at 100 sam.
ples/sec (i.e., one each 100 msec) demonstrated noappre
ciable difference in the pattern of recrudescen :

To assess the duration between stable ep <hs, V'
statistical analyses that we underiook and their. -omy
nying graphicsallow a more inclusive look at the tempo:
dynamics of recrudescence among 5pahal locatior.
Lelhmann (1990) had demonstrated that standard dev
lions across successive measurement samples of alp,
EEG (64-128 samples per second} exhibited a cyclic pal
temn corresponding to approximalely 20 peaks per secon
He then showed that during periods when the standar
deviation of successive epochs was highest, thal the loca-
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tionof the highest and lowest voltages remained stable for
approximalely 200 msecs. In order toreplicate and extend
these findings, we fitlered (IR digitnl filter) our EEG data
for two conditions in the experiment (baseline and count-
ing} for alpha (8-12 Mz} activity. We plotted the highest
squared voltage at each of 100 successive measurement
intervals. A cluster analysis was conducted, as described
earlier, on the unsquared voltages, separating each meas-
urcment interval into one of two clusters. We then plotted
the patlern of these clusters over the same 100 successive
intervals (snmple rate 200 Hz) as was used to plot the
highest squared voltages. The resulls of this analysis are
ilustrated in figure 12 A and B.

Consistent with Lehmann’s resuits, we found Lhat
the highest squared voltage (solid line in figure 12 A and
B) cycles at a rate of about 20 Hz. Lehunann found this
same cycle rate in standard deviations across successive
sample inlervals. When viewed inconcert with our clus-
tee analyses, however, an interesling relationship
emerpes. Note that whenever the highest squared volt-
ape is at its prak, the pattern across the 19 electrodes
remains ona single cluster (dashed line infigure 124 and
). Changes incluster assignment are associated with lhe
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trough of the highest squared vollage. Nute alsc  w
regularity of the changes in cluster assignme:it, part
larly in the baseline sample. This regularity is consis® 1
with the regularity in the alpha EEG.

However, contrary to Lehmann’s analysis, we
that the pattern across 19 electrodes remains stable {  an
average of only 50 msecs during rest, as opj-osed I .m
average of 210 msecs in his data. Perhaps this differe e
is due to his lower sample rate {64-128 samples per
ond), or the fact that he used only two electrodes {t1 =
with the highestand lowest voltage). Analysesinvol 2
cluster segmentlength thusappeartobe especiallyp -
ising. This is borne out not only in the comparisor ¢
can make with Lehimann's work, but in " - abL. N
[requency distribution of cluster segment length t.
criminate between the Baseline and Counting conditi =
As did Lehmamn, we are currently examiniag the - 1.
tionship between EEG measures and behavioral re ot
time. We are also using time series techniques to qu: nti-
fication of the pattern of cluster switching aisplave
figures 6 and 7.

We ourselves plan to explare the utility of usir
Laplacian correction to enhance localization of recor
voltages across the scalp. However, a 19-clectrode o
most likely provides insufficient samples for such ¢ -
rection. A 128-electrode net provides the oppo iuni’
accurate reference-independent voltage correction  a:
each electrode site. The application of both oltage ¢
Laplacian {current density) data as used by Tucker {1 %"
indeveloping programs used with the geodesicnet? i
promise for future studies of the spatictemporal dy -
ics of EEG.
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