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Some Mefthods ~ow Dynam~c Ana~ys~s o~ ~he Sca~p

lRecordedlErEG

Karl H. Pribram·, Joseph S. King·, Thomas W. Pierce·, and Amanda Warren·

Summary: This paper describes methods for quantifying the spatiotemporal dynamics of EEG. Development of these methods was motivaled
watching computer.generated animations of EEG voltage records. nl~e animations contain a wealth of information about the p<lltern of ell<ll'
across time in the voltages observed across the surface of the scalp. In an eHortto quantify Ihis paltern of changing volt<lges. we electcllto extr.l
single 'I"anli(i;>ble feature from each measuremenl epoch. the highest squared voltage among the various electrode sites. Nineteen ch<lnnels ()( ,.
were collected (rom subjects using an electrode cap with standard 10-20 system placements. Two minute records wcre obtained. Each record
sampled at a rale of 200 per second. Thirty seconds of artifact-free data were extracted from each 2 minute record. An algorithm lhen deterlllJ'
Ihe location of Ihe eh.mnelwith the greatest amplitude for each 5 mSec sampling epoch. We quantified these spatio-temporal dynamics as scal~

veclors and cluster .lnalytic plots of EEG activity for finger tapping. cognilive effort (counling backivards) and relaxation to iIIustr<lte the utility'"
techniques.

Key \Vords: EEC; Cillster an<llysis; Vector; Scalar; MATLAI3,

Introduction

In recent years some of the most promlsmg ad­
vances in the study of brain/behavior relationships
have come from an increase in the power of imaging
techniques (e.g., PET, MRI, EEG) that can be used to
correlate human brain activity with cognitive, emo­
tional and behavioral processes. Of these, the recording'
of brain electrical activity (EEG or event-related poten­
tials), though the oldest method, has benefitted as much
as the others form the availability of powerful compu­
tational platforms. For example, Paul Nunez and oth­
ers, reviewed by Nunez (1995), have been able to
increase the spatial resolution and determine phase
relationships among EEG placements by using
Laplildan mappings. Furthermore, Nunez has related
EEG mnppings to linear and non-linear systems. Simi­
lar advances have been made for ERP analyses by Alan
Gevins, \'vho hilS developed covariilnce patterns among
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experimentally isolated ERr evel~ts (Gevins alld CUi
1995). Such mappings, produced bylines conr.~'c

covariant ERrs, were shown to differ systern;lticllil
a function of fatigue during performance ,!' 'or!
memory lask.

At present, the m"jor meilsures of brain :lecLd
activity have one advantage over other im:'b '~~ I

niques -- that is, their potential for temporal resoluL
This potential is just beginning to be realized. L
Tucker, also using ERPs, has shown that a visuil t' •im
evokes a positive occipital response (at approximal:
100 msec) and then a second occipital wave forr' 1

"reprise" (at npproximately 300 msec) (Tucker et al. 1
Tucker et al. 1995). Using EEG recordings, That·
(1994) has traced the development of coherence pntl
in children, and Lehmann (1990) showed that, in
absence of external stimulation, p"lterns of bmin ell
cal activity "ppear to remain stable, on the average
about 200 msec and then change fairly abruptl' lO;1, IV

pallern. Such dynamical analyses of successl\f L
electricill microstates open a 'whole new vista I Sll

ing brain/behavior relationships. Bressler (1994)
taken advantage of these new possibilitie.s in deline,
portraits of intracerebral synchronization ;lnd hi IV

synchronizations vary over 80 and 24.0 msec perioG 'J

activity.
Advances in computer technology have enllb,

our laboratory and others (e.g., Tucker et nl. 199-11
generate animations of changing voltages ac:roo'­
array of electrodes over time.' However, as note-
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Tuckeret al. (1994) these "animations tax computational
resources and pose new challenges for scientific com­
munication" (p. 151). Currently, the only technique
available for reporting findings based on these anima­
tions is to present a series of static images of the scalp
surface which represent the locations of peak activity at
different points in time. However, this method does not
provide a quantifiable means by which data obtained
under different task conditions can be compared.

.. Therefore, we have attempted to develop a way of
quantifying the spatiotemporal dynamics of the EEG.
The approach reported in this paper is based on map­
ping changes in the location of a single feature of each
measurement epoch across time, the highest squared
voltage. This approach retains the excellent temporal
resolution available in EEG, while focusing attention in
the spatial domain on one electrode location per meas­
urement epoch.

Initial representations of the "path" of the highe~t
squared voltage indicated that the location oUhis fea­
ture changed rapidly (over 50 times per second). Our
term for a change in the location of the highest squared
voltage was a "switch", The "path" of the highest
squared voltage over time was thus !=alled the "switch­
ing"paltern, and the number of changes in location per
second became known as the "switching rate", How­
ever, it quickly became clear that our use of the term
switching was misleading, because it carried the clear
implication that a change in location of the highest
squared voltage reflected the controlled movement of a
signal from one location within the brain to another.
Other laboratories have noted this problem in interpret­
ing information regarding changes in EEG activity over
time, For example, Tucker et at. (1994) state that "Inter­
preting the shift in the Nl as actual movement of the
electrical field could of course be misleading; sequential
negativities over different regions could produce ap­
parent motion" (pp 141-142),

In order to avoid the implication that changes in the
location of the single highest squared voltage reflect the
presence of a continuous wave across the scalp, we chose
the term recrudescence as a label for changes in the
location of the highest squared voltage, rather than the
term "switching". The term recrudescence, of medical
origin, describes a sequence of phenomena in which a
phenomenon "pops up" but does not directly "cause" the
phenomenon to appear at another location at a later point
in time, Our use of this term emphasizes the "pop up"
aspect of its meaning.

This paper describes two methods by which pat­
terns of recrudescence can be depicted graphically. We
also demonstrate the use of a statistical technique
known as Cluster Analysis in representing the spa­
tiotemporal dynamics of the EEG. The goal of all three
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methods is to provide measures of changing EEG "olt­
age pallerns that can be used in comparisons of differ­
ent groups of su~jects and different task conditions as
well as in replications of work done in other laborato­
ries.

Methods

Dolo Acquisition

EEG data were collected using 20 Grass !vI< I PS
A.C. preamplifiers feeding into a pc 486 .computciby
way of two 16-channel AID converters, Ten channels
of each converter were involved in data acquisition.
EEG data were sampled at a rate of 200 per second for
120 seconds. Data acquisition and processing are con­
trolled by BrainScope, an in-hollse software p,,·'Kage.
Electrodes were placed on the scalp using a standard
10-20 system with an EEG cap (Electro-Cap Interna­
tional, Eaton, Ohio) referred to both ears. Channel 20 is
lIsed to monitor eye movements for later artifact iden­
tification and removal and does not enter further into
the data analysis. Data sets are 30 second portions of
the original 2 minute record, converted from binnr)' to
ASCII format arid transferred to a Silicon Graphj(~~

workstation for analysis. Data sets are arranged in n
matrix in which each of the 19 channels is represented
by a different row. Each of the 200 per second sample
epochs is represented as a column in the data matrix.
All algorithms used to calculate rate of change and to
complete the graphical representations are w";!ten a:.:
MATLAB functions.

ll1e methods presented in this paper are based on art
algorithm which detects and records the maximum value
and loca tion (row) of the squared voltages for each 5 msec
epoch within the data matrix. The program then tracks
the changes in the location of maximum amplitudebe­
tween EEG channels and between successive sampling
epochs. Finally, the changes in location are drawn onto
a circular figure, which represents a simulated scalp EEG
mapping surface. Data were collected during three con­
ditions, all with eyes closed, ll1e conditions weT"" Re-
laxation (baseline), Counting backwards frO" . by
threes, and rightand left Finger tapping. Relax; fI and
Counting backwards resulted in the most in' :rmative
use of our analyses, so only results from these conditions'
are presented in this report. In general, v.'e have found
other techniques, such as coherence plots, to ). lOTe

useful in ploUing brain electrical activity coordinate with
behavior, while our dynamic analyses show promise in
plotting brain electrical activity in subjectively experi­
enced states.

We examined our records over the whole range of
frequencies and separately for the theta; alpha, beta and
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g..,mma ranges. When we checked the gamma (40 I-Iz)
range plots against plols of 50-70 Hz and even againslthe
70-90 Hz range, we were unable to discern any difference.
Therefore, these plots are not presented, as we could not
comfortably assume that our gamma range recordings
were free from muscle artifact.

Rates of Recrudescence

Rales of change of maximum amplitude belween
various electrode locations were obtained using an algo­
rithm that searches and detects lhe maximum value of
the voltage for each epochin the data set. Asthis value
is detected, the channel number containing that voltage
is stored. The rate of recrudescence (appearance or re­
appearance of maximum amplitude in a different loca­
tion) is then calculated as the number of changes in
location of maximal voltage across successive epochs,
divided by the lotal duration (in seconds) of the record­
ing. As an example, assume that the data set contains
5000 sampling epochs. The algorithm would, therefore,
record the maximum squared voltage and its location for
each of the 5000 epochs. It would then count the number
of successive epochs for which the location of the maxi­
mum squared voltage changed. Suppose that this was
300. Since 5000 samples at 200 samples per second rep~

resents 30 seconds of recording, the rate of recrudescence
would be 300 divided by 30 seconds for a recrudescence
ra te of 100 per second.

Scalar Representation of the Distribution of
Recrudescence

Changes in location of peak amplitude across succes­
sive 5 msec samples taken during a 30 sec record are
represented by lines (scalars) connecting any two elec­
trode locations. These locations are plotted on a circular
diagram representing the approximate locations of the
electrodes on the scalp. As the maximum amplitude
recurs between two locations, the line between those
locations is drawn thicker. Thus the lines connecting
electrode l~cations show that the most frequent joint
sequence of maximum amplitude activity becomes
denser.

Vectorial Representation of the Spatial Distribution
of Recrudescence

The scalar lines connecting the points of maximum
amplitude depict the successive points of maximum
EEG amplitude, but do not provide information regard­
ing the direction in which recrudescence is operating.
For example, frequent recrudescence between F2 and T4
does not distinguish bel\·veen a voltage peak at F2 fol­
lowed by one at T4 and the reverse, a voltage peak at T4

followed by a peak at F2. As the utility of the dynamic
analysis is explored, we hope that an underlying process
that directs the rapid changes in the location of ampli­
tude will be discovered. As a first step in such an ' - i110­
ration, a vector representation is constructed, v,'hieh
provides a surface view of the direction of mo\'ement of
recrudescent maximum amplitude points. The purpose
of the vectorial display is to provide a graphic depiclion
of quantitative indices of directionality in recrudescence
belween electrode siles.

The display is based on a 19x19 matrix in \\hich
rows are' the 19 locations at ;my one epoch, .md the
columns are lhe same 19 locations ilt the next recorded
epoch. Cells along the diagonal indicate no change in
location of milximal voltage belween successive5 rnsec
epochs. Within this matrix, we simply count thenumber
of successive epochs in which maximum voltage
changed from one electrode to another. The total
number of such occurrences are tabulated ineach cell of
the matrix. Therefore, the matrix constitutes a frequency
distribution of directionally specific recrudescent activ­
ity between electrode locations. This frequency d ;;,tri­
bution is represented as a contour diagram, which
accompanies eilch frequency matrix.

Statistical Analysis of Changing Voltage Patterns

Cluster ilnalysis is a statistical technique that
groups cases together on the bilsis of similar profiles of
variables. Cluster analysis has been used in the context
of EEG reseilrch to assign individual subjects to clusters
on the basis of variables derived from one or more EEG
sessions (e_g., John et al. 1992) or to assign segments of
EEG to clusters (e.g., Friedmiln and Jones 1984). In this
paper, we use cluster analysis to assign each "measure­
ment epoch" to one of two clusters or profiles on the
basis of the pallern of 19 voltages obtained at each
epoch. The goal of these analyses was sim~ltaneously

10 take informat ion from all electrodes into aCC01'" ;1I1d
to categorize the pallerns of voltage changes ovcr time.
We chose two clusters to represent tile pallern of un­
squared vollage change -- that is, maxima and mi":nn
-- over time not just the voltage of a single dec:'.'_ e
(highest squared voltage) that was used to describe
recrudescence. This allmved the analysis to determine
differences between two clusters with regard to the sign
of the voltage;(that is, positive or negative deflection
from baseline). The pattern of ch;lI1ges from one duster
assignment to <lIlother over time could thus provide
information about the type of psychological activity
(e.g., relaxation versus cognitive effort) during those
portions of the record.

Two separate cluster analyses were conducte~l,with
twenty second records of unfiltered EEG obtained from
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Figure I. Scalar represenlation 01 Iwo differenl portions
(early and lale) and Iwo dolo sellenglhs (5.5 and 20.0
secs.)ollhe baseline condition: Figure I a and lb. 10101;
Ie and Id. Ihela: and Ie and 11. bela.

both the Counting and Baseline conditions using the
cluster procedure available from SPSS (Statistical Pack­
age for the Social Sciences). Epochs in both conditions
were assigned to one of two clusters.

Results

Figure 2 (a-I). Scalar represenlations 01 recrudesce
Total. alpha and bela EEG during resting and co
backwards.

rate as both data set length and position ir. the (
record are changed. The only noticeable differ
that, as expected, the tracings are darker in thE
records. Vector plots also showed this sf::lbility
samples taken at different times and within frer
bands.

:e;

r" :

.e

•Clg.'.
, fC

Within-Record Replication

The stability of our scalar and vector repre­
sentations with respect to the location of the epochs is
presented in figure 1, which shows scalar repre­
sentiltions of one subject's data from different portions
(early and late) and two dilta set lengths (5.5 and 20.0
sec) of the resting (baseline) condition. Figures la and
Ib represent total EEG; figures Ie and Id represent
theta; and figures Ie and 1£ represent beta activity.
Alpha activity gave identical results, emphasizing the
occipital region and is not presented to conserve space.
Note the consistency in the overall pattern of scalar
representation as well as the' similarity in recrudescence

Scalar Plots of Counting Experiment

Representations of the location and amount 0 .-co.·
descence during relaxation and counting backwa r< -::'..

ditions are presented in figure 2 (a-f). For tol :~h,

recrudescence rates for relaxation and countin··,l.
wards conditions were 116 and 109 per second. T'.
tively.

Of interest in these plots are differenes betw '\ i.

relaxation and counting conditions in the overall it:
of recrudescence among electrode lOG., Ions. N· r·
ticularly the "triangular" pallern among 'F?, T3:,' V
total EEG. In the alpha band, the pattern ch" °p'S

more sea ttered recrudescence with a strong pC!"
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Ihere is no recrudescence between adjacent 5 mse
ochs. -:l)f the contour plots the diagonals have
suppre:,:;ed (set to zero) so that patterns created by r, 'cu­
dt::"cen, ;! will be more apparent.

Fipre 3 (a-d) presents graphs of total EEG d
baseline and counting conditions and transforms Ih
in figure 2 to represent the direction of ch;l'1ge in
mum c.mplitude between pairs of electrode lac
The :'l!f,resentation on the top is the matrix di;
whereas the one on the bottom represents a two­
sienal ! :t'quency histogram (contour plot) of the
d" tao Ti!e diagonal which runs from the lower left,
10 the u;:per right corner serves as a reference for P

the mati ix representations. Symmetry about t'

~ n " ~ " " n h ft A ~ 0 Q ~ ~ ft ~ ~ N
1........ 11;.,.1

3d.

u..nlinl-l'OTAJ..

....

OasdiRC-TOT AI..

3b.

" n " " " ~ " h ~ 0 h D ~ n _ " ~ • ~
tlML:. •• S-

3&.

..

Dynamic Analysis 01 EEG

Figure 3. Matrix and mean vector (contour) plols of recrudescence corresponding 10 the scalar representations of fi
2a and 2b. Baseline. 3a and 3b; Counting. 3c and 3d.

tween right posterior and frontal areas (for example,
between 02 and Fl). In the beta frequency band, the
original triangular pallern in the resting condition
spreads to include other frontal locations during count­
ing.

Vector Representations of Counting Experiment

Matrix and mesh vector (contour) plots of recrudes­
cence corresponding to the scalar representations of fig­
ure 2 are presented in figures 3 and 4. The highest values
in the matrix are often on the diagonal formed from the
lower left to the upper right of the matrix representations
of recrudescence. This indicates that most frequently
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Figure 4. Matrix and mean vector contour plots at recrudescence for alpha activily corresponding 10 scalar I

sentalions of figure 2c and 2d. Baseline. 4a and 4b: Counting. 4c and 4d.

nal indicates an equal amount of recrudescence from
successive epochs between pairs of electrodes. 11,e lower
left quadrant of the matrix represents recrudescence
among more frontal electrode locations, whereas the up­
per right quadrant represents recrudescence among
more posterior electrode locations. Nole lhe frontal re­
crudescence (denoted by lhe light areas) in lolal EEG
during relaxation, baseline conditions in figure 3a. This
pattern (frontal recrudescence) persists during counting,
but it is somewhat less concentrated within frontal areas.
Similarly, in figure 4a and 4b, concenlrated recrudes­
cence among occipital areas in the alpha band during
baseline spreads out to other locations during counting.
Finally (figure Sa and Sb) shows concentri1led recrudes-

cence among lempori1llobe leads in the beta band·
rest, which changes to a more distributed pattern
counting.

Cluster Representations of Counting ~xperimr

When measurement epochs using unsquan
ages were classified as belonging to either a fi
second cluster, descriptive statistics indicated ;
two clusters differed from each other in terms of
of the mean voltages over time at eac, electro
Epochs assigned to Cluster 1 have mean voltag(
nineleen electrode sites that are positive. Clusb
mean voltages at all nineteen electrode sites I

J.
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Figure 5. Matrix and mean vector (contourl plots of recrudescence for beta activity corresponding to scalor repre·
sentations of figures 2c and 21. Baseline. 5a and 5b: Counting 5c and 5d.

negative. No differences in the pattern of mean voltages
across electrode sites were observed between EEG re­
cords obtained in the Counting and Baseline conditions.

After each measurement epoch was assigned to
either Cluster 1 or Cluster 2, plots of duster assignment
for each measurement epoch were obtained for both the
Baseline and Counting conditions. Figure 6 displays the
cluster assignment for each epoch in a sao msec sample
of the complete record during the baseline condition for
the same subject. Figure 7 displays the cluster assign­
ment (1 or 2) for each measurement epoch in a 500 msec
sample of the full 20 second record while one subject was
cQunting. Visual inspection of both figures clearly shows
that periods of time in which the rate of switching from

one cluster assignment to the other is slow (e.g., Epee!
1-70 in figure 6 and Epochs 1-39 in figure 7) are inte:
rupted by periods in the record where the Tate of c1'.Jstc
switching is rapid (e.g., Epochs 75-93 in figure 6 ane.
Epochs 39-45 in figure 7). Visual inspection of the ratc'
of cluster switching in the baseline and counting r'orc
indicated that the frequency of very short clu;.,er seg·
ments (i.e., portions of the record where less than fivl
consecutive epochs re assigned to the same cluster) w;
higher in the Counting condition than in the Baselin
condition. This hypothesis generated by visual inspec
tion was submitted to statistical analysis using the Chi·
Square test as reported below. .
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o \0 20 30 40 50 60 70 80 90 100
Measuremenl Epoch

Figure 6. Cluster Assignment of 100 Consecutive Measure­
ment Epochs (500 msecs) for Untillered EEG During

j
the

Baseline Condition.

Cluster Assignment: BaseinelUnlinered EEG

Clusler21------------,

CIuSlo,'

-

that indicated that the percentage of short cl~r SL,

ment lengths (between 1 and 5 epochs in each e1ustr
segment) in the Counting condition was significant I,
higher than the percentage of short cluster segments ir

, the Baseline condition (X 2 0,32) =5.2, p<.05). One quan,
titative difference in the dynamical pattern of EEG VOL

age changes between two cognitive task conditions h,,·
thus been established.

Figures lOand 11 display values of the highes'
squared voltage over the same 250 msec samples of r€
cord used in displays of the Cluster Switching rates fe
the Baseline (figure 6)and Counting (figure 7) condition~
Visual inspection of these and other portions of the COlT'.

plete records for I3aseline and Counting conditions ind
cates that slow rates of cluster switching areassociatl
with higher squared voltages (e.g., Epochs 75-9.' Forti
I3aseline condition and Epochs 39-45 for the Countir-

Baseline
30

Clusle, Assignmenl: Counting/Unfiltered EEG

Cusle, 21-------,

CIuSIO' I '-- '----- '--- '--

L-..... ,_...J-_-'-----''--~--'---:'---::'::--~--'o \0 20 30 40 50 60 70 80 90 100
Measuremenl Epoch

Figure 7. Cluster Assignment of 100 Consecutive Measure­
ment Epochs (500 msecs) for Unfiltered EEG During the
Counting Condition.

Rate of Cluster switching

A program written in C++ counted the number of
cluster segments at each possible length of a segment (i.e.,
the number of consecutive epochs assigned to a single
cluster). Figures 8 and 9 display the percentages of the
time in which each cluster Segment Length was encoun­
tered for the I3aseline and Counting conditions, respec­
tively. A higher percentage of short cluster segments
(i.e., representing fast cluster switching) was present in
the Counting condition than in the Baseline condition.
ll1is observation was confirmed by a Chi-Square analysis

Figure 8. Percentage of Segments at Each PossUe ('I. J'

Segment length for Unfiltered EEG During the Sri ,el
Condition.

Counting
30

Figure 9. Percentage of Segments at Each Possible C1ust
Segment length for Unfillere'd EEG During the Countil
Condition.
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Highesl Squarod Vollago: BasotinoJUr,lillo,od EEG
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Highosl Squared Vollage: CoununglUnl,lIe,ed EEG
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500

40

..
'": eo
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20100
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Figure 10. Highest Squared Voltage at 100 Consecutive
Measurement Epochs for Unfiltered EEG During the Base­
line Condition.

Figure II. Highest Squared Voltage 01 100 Consecutive
Measurement Epochs for Unfiltered EEG During the Count
ing Condition.

condition).' These visual observations were addressed
through statistical analyses using ANOVA, as reported
below.

One~wayANOVAs were used to compare the mean
highest squared voltages for short cluster segments (one
to five consecutive epochs in each segment) and long
cluster segments (30 or more consecutive epochs as­
signed to the same cluster). Separate ANOV As were
conducted on data from the Baseline and Counting con­
ditions. When data from both the Baseline and Counting
conditions were examined, epochs in short cluster seg­
ments were found to have significantly lower highest
squared voltages M = 64.04, ::ill = 67.44 for Baseline; (M
=42.20, Sl2 = 24.26 for Counting) than epochs in long
cluster segments (M = 118.76, SQ = 87.22 / EO,1893) =
151.62, R<.05 for Baseline; M = 104.40, S.Q = 68.64 /
1:(1,2718) =362.14., R<'OS for Counting).

Discussion
The foregoing data illustrate the possible utility of

some methods of dynamic analysis of the EEG made
possible by recent advances in both hardware and soft­
ware computer technology. The various depictions not
only provide spatiotemporal images of EEG dynamics
but also provide the bases for quantification and sub­
sequent statistical analysis of the temporal course of EEG
dynClmics.

To us, the most important and surprising finding of
this study is the rapidity of change in electrical pClllern.
Recrudescence ra tes ranged from 60 to 170 per second.
Next, the technique showed that under the conditions of

the investigation, there wereno clear cut sweeps of wave­
fronts across expanses of scalp. Rather the maximw'
squared potential "popped up" in one location and thel
in another totally different location over time. Recrudes­
cence rates and the scalar diagrams thus provided aI'
initial quantification of the speed of change aI .1 spal
distribution of .EEG activity, respectively. The 'allen"
so generated allow for quick and accurate (as accurate a:
the particular recording technique will allow) cnmpari
sons of spatial dynamics between individuals or bet wee .
experimental conditions.

The vectorial representations provide informatio;
on the directionality of recrudescence between all pairs
of electrode locations. It is informative that most ofte r

for the sample rate of 5 msec used in our studies. th'
location of highest squared voltage does not change
across successive sampling epochs. With the diagonai
formed by this lack of change in the record as :l b(lseline,
we can also obtain a picture of directional relationship'
between all electrode loc(ltions. Sample rates at 100 salT;
pies/sec (i.e., one each 100 msec) demonstrated noapprc
ciable difference in the pattern of recrudescen .

To assess the duration between stable ep.::hs, t'

statislical (Inalyses thaI we undertook and their ;~om~
nying graphics allow a more inclusive look at the It'mpo:
dynamics of recrudescence among spatial locatiol,
Lehmann (1990) had demonstrated that slandard de\'
tions across sllccessive measurement samples of alp.
EEG (64-128 samples per second) exhibited a cyclic pal
tern corresponding to approximately 20 peaks per secant
He then showed that during periods when Ihestandar,
deviation of successive epochs was highest, that :he locn-



Figure 12. Overlay of Squared Voltage and Cluster Assign­
ment for Baseline and counting for alpha activity.

lion of the highest and lowest voltages remained stable for
approximately 200 msecs. In order to replicate and extend
these findings, we fillered (IIR digital filter) our EEG data
for two conditions in the experiment (baseline and count­
ing) for alpha (8-12 Hz) activity. We plotted the highest
squnred voltnge nt each of 100 successive measurement
intervnls. A cluster ann lysis was conducted, asdescribed
earlier, nn the unsgunrcd vollages, sepnrnting ench meas­
urement intervnl into one of two clusters. We then plotted
the pnttern of these clusters over the same 100 successive

.intcrvllis (snll1ple rlIte 200 Hz) as was used to plot the
hiAlll'st sqllllred v()llll~es. The rcsulls of this lInlllysis life
iIIustrllted in figure 12 A and B.

Consistent wilh Lehmimn's results, we found that
the highest squlIred voltnge (solid line in figure 12 A and
B) cycles at 1I rnte of nbout 20 Hz. Lehmnnn found this
smne cycle rate in standmd devilltions 'KroSS successive
snmple inlervnls. When viewed in nmcerl with our clus­
ter nnnlyses, however, nn interesting rellllionship
l'nll'rges. Nl1!l' thnt whenevcr the highest squnred volt­
ilf,l' is ilt ils "l'nk, the pnllern lIC\'nss the 19 eleclrodes
remOlins on 1I single c1usler (dashed line in figure 12A nnd
0). Ch"nf,es in cluster nssignmcnt nre associated with the

Pribram

trough of the highest squared voltage. N.,te alse Ie
regularity of the changes in cluster nssignmc\t, pnrt t­

larlyin the baseline sample. This regularity is consif' Il

with the regularity in the alpha EEG.
However, contrary to Lehmnnn's lInlllysis, we d

that the pattern across 19 electrodes remains st:lble f 111

average of only 50 msecs during rest, as oFFosed I: ,n
average of 210 msecs in his data. Perhaps this differ€' ("P.

is due to his lower sample rate (64-128 samples per
ond), or the fact that he used only two electrodes (t)-f~

with the highest and lowest voltage). Analyses invol _'
cluster segment length thus appear to be especia1Iy pl­
ising. This is borne out not only in the compiuisor·c
can make with Lehmann's work, but in " _ <lL '~I

frequency distribution of cluster segment length II- 5-

criminnte between the Baseline and Counting conditi \s

As did LehmalUl, we are currently eXClInini"g the ,­
Honship between EEG measures and behavioral reJI- .
time. We life also using time series techniques to qUi '1ti­
fication of the pattern of cluster switching ci:splay,.,
figures 6 lind 7.

We ourselves plan to explore the utility of usir ;j

Laplacian correction to enhance localization of recor 'C

voltages across the scalp. However, a 19-electrode;1 ;1,

most likely provides insufficient samples for such ,. 'r­
recHon. A 128-electrode net provides the oppo l uni; 1:

accurate reference-independent voltage correctioi a;

each electrode site. The application of both oHag<- 1C1

Laplacian (current density) data as used by Tucker (1 'le;'>

in developing programs used with the geodesic net 1 _1'
promise for future studies of the spatiotemporal dy n
ics of EEG.
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