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Summary: Eighteen older adults and 18 younger adults were compared on two quantitative measures describing ch,mges over time in the spatial dis­
tribution of running EEG. EEC was collected from 128 electrodes under resting eyes-open and eyes-closed conditions and during performance of a 13
minute sustained attention task. One EEC measure, the recrudescence rate, represented the number of changes in the location of the highest squared
~oltage per second: A second EE.C measure consisted of the algorithmic complexity of changes in the location of the highest squared voltage over
time. Regardless ot the task conditIOn, older adults had significantly higher scores than younger adults on both the recrudescence rate and the mea­
sure ofalgorithmic complexity. The implications of the results for neurologically-based theories of performance declines in older adults are discussed.
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Introduction

Older adults perform less well than younger adults
on a wide variety of cognitive tasks. These tasks include
measures of speed of performance, memory, selective at­
tention, and sustained attention. One proposed explana­
tion for these findings is a task-independent decline in
the speed of information processing in older adults
(CerelIa 1985; Myerson et al. 1990; Salthouse 1985). This
model has become know as the generalized slowing hy­
pothesis. Other explanations of age differences in cogni­
tive performance include (a) reduced processing
resources available to older adults (e.g., Salthouse 1991)
and (b) reduced inhibitory control in the cognitive opera­
tions of older adults (Hasher and Zacks 1988). Each of
these positions is based on the underlying assumptions
that (a) changes in brain activity with increasing age are
responsible for age differences in behavior and (b) these
changes take the form of decrements in brain activity.
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Several non-invasive methods have been used to
study brain activity during cognitive performance. These
methods include PET (e.g., Madden et al. 1999), functional
rvIRl, and EEG. The primary advantage of EEG is that
samples of brain activity are obtained hundreds of times
per second. PET and functional MRl must average signals
over periods ranging from seconds to minutes. Tradi­
tionally, EEG's advantage in terms of temporal resolution
has been outweighed by severe restrictions in spatial reso­
lution. However, recent advances in dense-array elec­
trode systems containing 64 or 128 recording sites have
offset this disadvantage to some degree (Potts et al. 1998;
Tucker et al. 1994). Because of its high sampling rate, EEG
was used in the present study to examine age differences
in the rate of change in brain activity.

A large literature exists describing age differences in
quantitative measures ofEEG activity. Studies using
spectral analysis to quantify the percentage of EEG activ­
ity within the delta, theta, alpha, and beta frequency
bands have yielded inconsistent findings regarding age
differences in the brain's electrical activity. For example,
a number of investigators have reported higher levels of
beta activity in healthy older adults during baseline con­
ditions requiring no mental effort (e.g., Duffy et al. 1984;
Marciani et al. 1994). Similarly, Marciani et al. (1994) re­
ported that older adults had lower percentages of theta
and alpha activity and higher percentages of beta activ­
ity, compared to younger adults, during performance of
a mental arithmetic task. Incontrast, other studies either
report shifts of the power spectrum towards the lower
frequencies with increasing age (for a review, see Klass
and Brenner 1995) or no age differences at all (e.g.,
Hartikainen et al. 1992).
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The mixed nature of findings regarding age differ­
ences in EEG frequency components makes it difficult to
link lower levels of cognitive performance observed in
older adults to specific patterns of brain electrical activ­
ity. One reason for the inconsistent findings regarding
age differences in EEG may be that the effects of age are
more predominant in the relationships among measure­
ment sites (i.e., functional connectivity) rather than in the
pattern of activity at a single location.

Spectral analysis provides information about the dy­
namics of EEG by quantifying the constituent frequencies
present in EEG. However, spectral analysis only describes
the patterns of electrical activity at individual electrode
sites. An alternative strategy is to examine the distribution
of electrical activity across the entire surface of the scalp
and to quantify patterns of change in the spatial distribu­
tion of EEG. The purpose of the present study was to com­
pare yotmger and older adults on two such quantitative
measures of EEG activity that take into aCCotmt data from
each of 128 electrode sites. These two measure are the re­
crudescence rate (Pribram et al. 1996) and a measure of al­
gorithmic complexity (Kolmogorov 1965).

The recrudescence rate as a measure of the rate
of change in EEG voltage animations

Relatively recent technology has made it possible for
many labs to represent the spatial distribution of EEG
through voltage maps that use data from a limited num­
ber of electrode sites to extrapolate voltages over the en­
tire surface of the scalp. When voltage maps, at
successive measurement epochs are presented as run­
ning animations, it is clear that the observed pattern (a) is
highly complex and (b) changes at a rapid rate. In order
to compare the patterns in various records with each
other, it is necessary to quantify one or more aspects of
these complex patterns.

Using running animations of EEG voltage maps as a
starting point, Pribram et a1. (1996) proposed a number
of techniques for quantifying the complex patterns of
change observed in these maps. One strategy was simply
to track changes in the location of a single feature of the
running animation. The feature selected was the highest
squared voltage among all electrode sites at each succes­
sive measurement epoch. The rate of change in the loca­
tion of this feature was quantified by calculating the
number of changes per second in the location of the high­
est squared voltage. Pribram et a1. (1996) referred to this
measure as the recrudescence rate. The term recrudes- .
cence implies a change in location of a particular feature
without an action at one site causing the appearance of
that feature at another site. The authors found that the re­
crudescence rate was higher during performance of a
mental arithmetic task than during a resting baseline.
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Algorithmic complexity as a means of quantifying
the complexity of patterns of change in the
location of the highest.squared voltage

The recrudescence rate provides information about
the rate of change over time in the location of a single fea­
ture of an EEG voltage animation, the highest ~q~a~ed
voltage. However, this measure does not contam 1Otor­
mation about the degree of complexity in the sequence of
electrode sites containing the highest squared voltage or
the degree to which there is redundancy in this sequence.
Information about the path of successive locations of the
highest squared voltage can be represented by (a) assign­
ing an abstract symbol to each electrode location, (b) de­
termining the electrode site containing the highest
squared voltage at each measurement epoch, and then (c)
constructing a time series consisting of the symbols cor­
responding to each measurement epoch. A measure of
the algorithmic complexity (Jimenez-Montano 1984;
Kolmogorov 1965) of this time series was used to quan­
tify the degree of complexity present in this s~bol

string representing successive locations of the hIghest
squared voltage.

Mathematically, algorithmic complexity can be
thought of as a data compression routine that defines tI:e
degree of complexity present in a string of symbols 10

terms of the number of bits of information needed to rep­
resent the symbol string after compression. Random se­
quences of symbols cannot be compressed t~ a signifi~ant

degree. However, symbol strings that contam substrmgs
that repeat themselves one or more times (consistent with
the presence of a hierarchically structured redundant pat­
tern) can be compressed to a significant degree.

Algorithmic complexity complements the recrudes­
cence rate because it captures information about the pat­
tern of changes in the location of the highest squared
voltage, not just the rate of change in its location. The
computational routine used to calculate algorithmic
complexity in this paper has been used previously to de­
scribe the complexity of neural spike trains tmder differ­
ent experimental conditions (Rapp et a1. 1994) and the
complexity of variations in heart rate (Storella ~t a1. 19?6~.
Additional information about the mathematical defU1l­
tion of algorithmic complexity is provided in the
Methods section of this paper.

Purpose of the present study

The goal of the study was to compare yotmger and
older adults on EEG measures of recrudescence rate and
algorithmic complexity. EEG records from a 128 electrode
system were obtained from 18 yotmger and 18 older adults
before, during, and after performance of a 13 minute con­
tinuous performance task. On the basis of the generalized
slowing hypothesis, it was predicted that the EEG of older
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adults would have lower recrudescence rates and lower
levels of algorithmic complexity than younger adults.

Method

Participants

Eighteen healthy older subjects (10 males and 8 fe­
males) and 18 healthy younger adults (7 males and 11 fe­
males) served as research participants in this study. Older
adults had a mean age of 71.55 years (SO =6.82) and a
mean of 16.17 years of education (SO =2.23). Younger
adults had a mean age of 21.78 years (SO =3.35) and a
mean of 14.39 years of education (SD = 1.42). The cOgnitive
status of all participants was assessed using the Mini Men­
tal State Examination (NfMSE) Questionnaire (Folstein, et
al. 1975). No NfMSE scores for healthy older or younger
adults fell in the impaired range (Le., below a score of 26).
No subjects had a previous history of learning disabilities,
head injury, or coronary heart disease, and none were cur­
rently taking psychotropic medications. Three older adults
were taking medication for hypertension and one older
adult was taking medication for treatment of diabetes.

Apparatus

EEG data were collected with a 128-channel Geode­
sic Sensor Net, Version 1.0 (Tucker 1993). The net con­
tains 128 electrodes wrapped in electrolytic sponges.
Each sponge is set inside a plastic casing. The plastic cas­
ings holding the electrodes are connected by monofila­
ment lines to form a geodesic pattern. The distance
between neighboring electrodes is 2.8 cm. A reference
electrode and common electrodes are located at vertex
and the bridge of the nose, respectively. Surface imped­
ance is lowered by soaking the sponges in a solution of
KCl. Typical surface impedances are 15-20 KOhm.

EEG data were amplified through an Electri­
cal-Geodesics Net Amps Dense Sensor Array Amp 128,
Version 1.1 and interfaced with a Macintosh Power PC
8100. The NetAmps have input impedance of 200 MOhms,
bandwidth of 0.01 Hz to 400 Hz, and a programmable
low-pass filter configurable from 40-400 Hz (Tucker 1993).
The sampling rate was 500 samples per second. Internal
amp settings were controlled by data acquisition software
developed by Electrical-Geodesics Incorporated, Version
1.0. Data analysis was conducted using MATLAB, Version
4.1.1 software on a Silicon Graphics workstation computer.

Materials

Continuous performance task. The Intermediate Vi­
sual and Auditory (IVA) Continuous Performance Test is
an "integrated 13 minute auditory and visual continuous
performance test designed to assess two major factors:
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Response Control and Attention" (Sanford 1995). This
test presents participants with either ''1''s or "2"s visually
or audibly through speakers located beside the screen.
Participants are instructed to press a mouse button every
time they either see or hear a "I" and to do nothing when
they see or hear a "2". Equal numbers of "1"s and "2"s and
equal numbers of visual and auditory stimuli are pre­
sented. Five hundred stimuli were presented to partici­
pants over a thirteen minute period, or approximately
one stimulus every 1.5 seconds.

The task provides information about the ability to
maintain attention on a single task over an extended period
of time. Performance and reaction time were evaluated by
a button press on a computer mouse in response to either a
randomly presented visual or a\lditory cue. Response con­
trol measures include prudence (a measure of impulsivity
and response inhibition based on the number of responses
to the non-target stimulus "2"), consistency (a measure of
the variability of RTs on correct trials computed by divid­
ing the RT at the 25 th percentile by the RT at the 75th percen­
tile and multiplying by 100), and stamina (based on a
comparison of RTs obtained at the beginning and end of the
task). Attention measures included vigilance (based on the
number of trials on which participants failed to respond in
the target stimulus "1"), focus (a measure of the variability
of performance based on the dividing the standard devia­
tion of RTs by the mean RT), and speed (the mean reaction
time for correct trials). The IVA analysis software provides
separate scores for responses on auditory and visual trials
for each of the six types of measures described above. Only
raw scores (unsealed for age or gender) for each of the re­
sulting 12 dependent measures were used in statistical
analyses of IVA performance. For all measures, higher
scores indicate better performance.

Procedure

All participants were provided with verbal and
written descriptions of the study and given the opportu­
nity to ask questions about their participation as research
subjects. After giving their informed consent, partici­
pants were seated in a comfortable reclining chair while
the sensor net was applied. After head circumference
and reference points were obtained, a sensor net that had
been bathed in an electrolyte solution containing KCl
was positioned on the surface of the scalp. The electrodes
were manipulated against the scalp with finger pressure
until all 128 electrodes were under the 40 KOhm imped­
ance level. The investigator then left the participant in a
dimly lit, sound attenuated room for data collection.

Two separate one minute EEG pre-task resting base­
line samples were obtained. The first baseline recording
was obtained with eyes open, the second with eyes closed.
During the recordings, visual inspection was used to ex-
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c1ude artifacts due to eye movement or any other notice­
able muscle activity. After the baselines were recorded,
another series of running EEG data was collected while
subjects performed the Intermediate Visual and Auditory
(IVA) Continuous Performance Test (Sanford 1995). One
minute samples of running EEG were collected during the
first, seventh, and twelfth minutes of performance. After
the task was completed, separate one minute post-task
resting baselines with eyes open and eyes closed were ob­
tained. Finally, participants were debriefed and given a
chance to ask questions about the experimental protocol
and the research questions addressed in the study.

Design

Independent variables.

A 2 (Age Group) X 7 (Task Condition) design was
used in analyses of dependent variables in this study. Age
group was a between-subjects independent variable and
consisted of two levels (healthy younger and older adults).
Task condition was a within-subjects factor and consisted
of seven levels (pre-task eyes-open and eyes-closed condi­
tions, three task conditions, and post-task eyes-open and
eyes-closed conditions).

Dependent variables obtained from EEG.

The EEG dependent variables examined in this
study were (a) the recrudescence rate and (b) the algo­
rithmic complexity for the symbol string of electrode
sites containing the highest squared voltage.

Recrudescence rate.

A MATLAB routine first determined the electrode lo­
cation at each measurement epoch that contained the high­
est squared voltage. The program then determined the
number of times per second that a change in the location of
the highest squared voltage occurred (Pribram et al. 1996).

Algorithmic complexity.

The algOrithm to compute the measure of complexity
used in this study was originally described by Kolmogorov
(1965) and further developed by Jimenez-Montano (1984).
The algorithm consists of a data compression routine that
takes a sequence of abstract symbols and determines the
degree to which the symbol sequence contains segments
that repeat themselves, and thus contain redundant infor­
mation. Using this type of strategy, the less complex and
more redundant the symbol sequence, the more the pro­
gram is able to minimize the resulting compressed symbol
sequence. For example, perhaps a sample symbol string
consists of the following sequence of symbols [1 3273137
273J. The data compression routine searches for a pattern
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that repeats itself within this string of abstract symbols. In
this case, the substring [2 73J is repeated twice. A new sym­
bol is then assigned to represent each example of the re­
peating sequence. For example, the symbol [A) might be
used to represent the substring [2 73). A new and shorter
symbol string is then genera ted by rep lacing each exampIe
of the repeating sub-string with the single new symbol. In
this example, replacing every example of a [273] with the
new symbol [A] results in a new string that is considerably
shorter than the original, [13 A 137 A]. The algorithm re­
peats this procedure until there are no more repetitions
present within the latest version of the complete symbol se­
quence. For example, substituting the second new symbol
[B] for the substring [13] results in a further reduction of the
number of bits of information required to represent the
original symbol string, [B A B7 A]. The measure of com­
plexity generated by the program is based on the number of
substitutions needed to eliminate any repetitions (or re­
dundancies) in the final version of the symbol string and
thus to fully compress the original symbol string.

In the present study, each symbol within the symbol
sequence represents one of the 93 electrode sites closest to
vertex (the routine used in this study is unable to use more
than 93 different symbols, so 35 peripheral electrodes were
omitted from the analysis). At each measurement epoch
(occurring at two msec intervals), the location of the highest
squared voltage was identified, and the symbol corre­
sponding to that location was added to the string. Thecom­
pleted symbol string thus consisted of information about
changes in the location of the highest squared voltage. The
numerical value generated by the algorithm represents the
degree to which redundant (repeating) sequences of loca­
tions of the highest squared voltage are observed.

Dependent variables based on IVA performance.

Twelve measures provided by the IVA analysis soft­
ware were used as dependent variables in this study:
Prudence-Auditory, Prudence-Visual, Consis­
tency-Auditory, Consistency-Visual, Stamina-Auditory,
Stamina-Visual, Focus-Auditory, Focus-Visual, Vigi­
lance-Auditory, Vigilance-Visual, Speed-Auditory and
Speed-Visual. These measures are described in the Mate­
rials section of this paper.

Results

Effects of age and task condition on EEG
measures

The MANOVA routine from SPSS was used to con­
duct a 2 x 7 mixed-model ANOVA for each of the two
EEG dependent variables described above. An alpha
level of .05 was used for all tests of statistical significance.
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Figure 1. Recrudescence rates of younger and older adults during different task conditions. Error bars represent standard
errors of the mean.

Comparisons of healthy older and younger adults
on recrudescence rates.

A significant Age Group x Task Condition interac­
tion was observed, f(6, 204) :: 2.79, 12-:: .013, eta2 :: .11
(see figure 1). No significant effect of task condition for
older adults was observed. The simple effect of task
condition for younger adults was significant, f(6,102) ::
2.68,12:: .019, eta2 :: .19. Simple comparisons regarding
the effect of task condition for younger adults indicated
that (a) recrudescence rates were significantly higher in
the baseline eyes-open condition than in the baseline
eyes-closed condition and tha t (b) recrudescence rates
were significantly lower in the three task conditions
than in the baseline eyes-open conditions. The presence
of a significant main effect for age group indicated that
older adults had significantly higher recrudescence
rates than younger adults across all task conditions,
f(1,34) :: 20.19, R < .001. No significant main effect of
task condition was observed, 12 > .05.

Comparisons of healthy older and younger adults
on algorithmic complexity.

The presence of a significant main effect for age
group, f(1,34) = 16.27, R < .001, eta2 = .32, indicates that
younger subjects displayed lower levels of algorithmic
complexity in the pattern of change in the location of the
highest squared voltage than did older adults (see figure
2). No main effect for task condition was observed. The
Age Group by Task Condition interaction did not reach
statistical significance, p > .05.

Comparison of younger and older adults on
subtests from the IVA Continuous Performance
Task

A multivariate analysis of variance was conducted
comparing younger and older adults on the following
twelve subtests from the IVA Continuous Performance
Task:Vi.gilance-Auditory,Vigilance-Visual, Focus Audi­
tory, Focus-Visual, Prudence-Auditory, Prudence-Visual,
Consistency-Auditory, Consistency-Visual, Stam-
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Figure 2. Algorithmic complexity of patterns of change in the location of the highest squared voltage for younger and
older adults during different task conditions. Error bars represent standard errors of the mean.

ina-Auditory, Stamina-Visual, Speed-Auditory, and
Speed-Visual. Means and standard deviations for IVA
subtests are presented in table 1.

A significant multivariate effect for age group was
observed, E(7,22) =2.S5, I2 =.016, eta2 =.60S. Univariate
analyses showed that older adults performed Signifi­
cantly better than younger adults on the Focus-Visual
(}:(1,34) = 23.93, I2 < .001, eta2 = .42) and Consis­
tency-Visual measures (f(l,34) = 16.5S, I2 < .001, eta2 =
.334), reflecting greater variability in reaction times from
the beginning to the end of the task in younger adults.
Younger adults performed significantly better than older
adults on the Speed-Auditory measure, (f(l,34) = 4.30, I2 =
.046, eta2 = .112), reflecting faster reaction times for youn­
ger adults on auditory trials. Significant effects of age
graup were not observed for the nine other IVA measures.

formance of the IVA. Higher recrudescence rates were
associated with significantly higher scores on both the
Focus-Auditory measure (r(34) = .467, I2 = .004) and the
Consistency-Visual measure (r(34) =.5S4, I2 < .001). No
other correlations between the recrudescence rate and
IVA measures reached significance at the .05 level.

Pearson correlations between algorithmic
complexity and IVA measures

Scores from the IVA were correlated with the average
of the three measures of algorithmic complexity obtained
during performance of the IVA. Higher levels of algorith­
mic complexity were associated with significantly higher
scores on the Consistency-Visual measure (r(34) =.41S, I2 =
.011). No other correlations between algorithmic complex­
ity and IVA measures reached significance at the .05 level.

Pearson correlations between recrudescence rate
and IVA measures

Scores fram the IVA were correlated with the aver­
age of the three recrudescence rates obtained during per-

Discussion
The primary goal of this study was to determine

whether age differences exist in the distribution of EEG



Aging and EEG 133

Table I. Means and Standard Deviations of IVA Measures for Younger and Older Adults. Values in parentheses represent
standard deviations. Scores for Speed-Auditory and Speed-Visual are measured in milliseconds.

Age Group

IVA Measure

Prudence-Auditory

Prudence-Visual

Consistency-Auditory

Consistency-Visual

Stamina-Auditory

Stamina-Visual

Focus-Auditory

Focus-Visual

Vigilance-Auditory

Vigilance-Visual

Speed-Auditory

Speed-Visual

Younger Adults

97.83 (2.14)

95.89 (4.71)

73.06 (6.49)

71.33 (3.12)

100.94 (8.86)

100.06 (9.54)

71.11 (7.22)

73.44 (3.42)

99.44 (1.41)

99.67 (0.76)

466.22 (50.53)

330.38 (40.58)

Older Adults

96.89 (3.08)

96.16 (4.88)

73.94 (6.27)

76.38 (4.96)

98.53 (9.38)

101.72 (9.53)

72.05 (11.41)

78.16 (3.41)

93.94 (2.25)

98.94 (2.38)

526.78 (113.12)

361.00 (59.36)

across the surface of the scalp. The results of the study
showed that older adults displayed significantly more
rapid changes in the location of a single feature of EEG
voltage animations (Le., the highest squared voltage)
than did younger adults. Analyses using a measure of
algorithmic complexity indicated that changes in the lo­
cation of this single feature were significantly more com­
plex in older adults than in younger adults.

The study also provided an opportunity to observe
recrudescence rates collected from participants in (a) dif­
ferent subject populations and (b) different task condi­
tions. The study by Pribram et a1. (1996) was designed
only to describe and demonstrate the recrudescence rate
as a possible method for quantifying EEG activity. The
present study demonstrates the utility of the recrudes­
cence rate as an individual difference variable that can
discriminate between different task conditions and sub­
ject populations. The algorithmic complexity of patterns
of change in the location of the highest squared voltage
discriminated between younger and older adults but not
between task conditions.

Overall, analyses involving measures from the IVA
Continuous Performance Task indicated only modest
performance differences between younger and older
adults. Younger adults displayed significantly faster re­
action times to auditory stimuli than older adults while
older adults performed better than younger adults on
two IVA measures based on the standard deviations of
reaction times: Focus scores for visual trials and Consis­
tency scores for visual trials. This pattern of results indi­
cates that the responses of older adults are significantly

slower, but less variable than those of younger adults
across the 13 minute task. No age differences were ob­
served in other IVA measures, including those measures
of attention based on either the number of errors of omis­
sion (failing to respond to a target stimulus) or commis­
sion (responding to a non-target stimulus).

Correlational analyses indicated that significant cor­
relations between the recrudescence rate and measures
of task performance were obtained for only two mea­
sures of IVA performance: Consistency-Visual and Fo­
CUS-Auditory. Scores for EEG algorithmic complexity
were correlated with only the Consistency-Visual mea­
sure from the IVA. These findings indicate that both the
recrudescence rate and the algorithmic complexity are
largely insensitive to performance measures assessing
speed, vigilance, and response inhibition. Further stud­
ies are needed to determine whether these EEG measures
are sensitive to performance differences in tasks requir­
ing other components of information processing, such as
memory or selective attention.

Because the relationships between EEG and behav­
ioral measures are correlational in natur~, the interpreta­
tion of age differences in recrudescence rate and
algorithmic complexity should be approached with cau­
tion. The data presented in this paper show that an EEG
measure of the rate of change over time in the brain's
electrical activity, the recrudescence rate, was consis­
tently faster in older adults than in younger adults. This
finding, at face value, seems inconsistent with a general­
ized slowing interpretation of brain/behavior changes
that occur in normal aging. One possible explanation for
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this apparent inconsistency is that faster recrudescence
rates and higher levels of algorithmic complexity in the
EEG records of older adults reflect a decrease in the coor­
dination of processing activities among cortical areas.
This decrease in coordination might, in tum, be caused
by an age-related slowing in the speed of information
processing. Further work utilizing measures of shared
variance among electrode sites may help to clarify the ef­
fects of aging on the spatially complex patterns of change
observed in dense-array EEG recordings.

In summary, the present study provides evidence
that two quantitative measures of EEG activity based on
patterns of change among electrode locations success­
fully discriminate between two subject populations:
younger and older adults. In addition, the recrudescence
rate discriminated between task conditions, particularly
between eyes-open and eyes-closed conditions. Further
research is needed to determine the specific task condi­
tions under which higher and lower scores on these mea­
sures are obtained and to determine the types of tasks
where levels of performance are related to these quanti­
tative measures of EEG activity.
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