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Abstract. This study descnibes the results of experiments motivated by an atternpt to understand
spectral processing in the cerebral cortex (DeValots and DeValois, 1988; Pribram, 1971, 1991).
This level of inquiry concemns processing within a restricted cortical area rather than that by which
spatially separate circuits become synchronized duning certain behavioral and experiential processes.
We recorded neural responses fob 55 locations in the somatosensory (barrel} cortex of the rat o
various combinations of spatial frequency (texture)} and temporal frequency stimufation of their
vibrissae. The recordings obtained from single and multi-unit bursts of spikes were mapped as surface
distributions of local dendritic potentials. The distributions showed a variety of patterns that are
asymmetric with respect to the spatial and temporal parameters of stimulation, and were, therciore,
not simply reflecting whisker flick rate. Next, a simulation of our results showed that these surface
distributions of local dendritic potentials can he described by Gabor-like functions much as in the
visual system. The results provide support for a model of distributed cortical processing that imposes
a physiologically derived frame (the limited extent of a dendritic patch) and an anatomically derived
(axonal) sampling of the distributed process. This combination provides a complex Gabor wavelet
that encodes phase, which is necessary 1o processing such details as edges and texture in a scene. The
synchronization across cortical areas that make the Gabor wavelet processes within restricted cortical
aregs available to one another (the binding problem) proceed at a “higher order” level of integration.
Both levels of distributed processing accomplish computation in the conjoint spacetime and spectral
domain,
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1. Intreduction

In the mid-1960s, Leith and Upatnicks (1965) found ways to produce optical
holograms using the mathematical formulation proposed by Dennis Gabor (1948).
Engineers (e.g. van Heerden, 1963), psychophysicists (e.g. Julez and Pennington,
1965) and neuroscientists {(c.g., Barrett, 1969; Pollen, 1971; Pribram, 1966) imme-
diately saw the relevance of holography to the hitherto intractable issues of brain
function in perception (e.g., constancies) and memory (e.g., distributed store).
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This early promise was temporanly deraled by the advent of computer-
friendly associative nets based on massively parallel programming architectures.
For example, Longuet-Higgins and his group, inspired by Crick (Willshaw et al.,
1969), proposed that a non-holographic amplitude modulated associative memory
model based on correlations (that did not rely on phase encoding) could handle a
large storage capacity and efficient representational memory. On the other hand,
van Heerden (1970a & b) noted that holographic (distributed spectral) principles
account_for aspects of perception that cannot be addressed by non-holographic
associative nets.. Yan Heerden used a holographic process that encodes coherence
(in which the phase spectrum is preserved) rather than just correlation. Indeed, the
argument 1S best presented i in his own words:

Willshaw, Buneman and Longuet-Higgins have proposed a-nonholographic
associative memory mode] for the brain (Willshaw er al., 1969, p. 9601).
They also criticize the proposal made by myself (van Heerden, 1963, p.
393) and by Pribram (1966, 1969) that the brain would be organized on the
holographic principle. They say: *How could the brain Fourier-analyse the
incoming signals with sufficient accuracy ... "

I agree with the contention of Willshaw, Buneman, and Longuet Higgins,
in their response to my communication (van Heerden, 1970), that the asso-
ciative net they proposed (Willshaw et al., 1969) performs the specified
functiens™as well as the hologram. Two of the most striking capabilities of
‘human memory, however, are not present in their network. The first is our
ability to recognize a person we know, when he appears in-our field of view,
which may contain a hundred more people. The sudden flash of recognition

.. this absolute certainty of “this is he and it can be nobody else” is . . . evoked
only by an extremely reliable and fast form of information processing in our
brain. Thus function of recognizing is also performed by the two-dimensional
hologram, as the appearance of a bright light poirit in the image plane of the
optical arrangement, and the brightness and sharpness of the light point are a
scientific measure of the degree of recognition.

The second capability is our ability, after recognizing 'a person, to
recall quickly a considerable amount of the information we have about this
person. In an optical arrangement, the recognition signal given by the two-
dimensional hologram provides the instruction for generating total recall of
the relevant information from a three-dimensional hologram . ..

In a book on the subject {van Heerden, 1968) I discussed . . . how the brain
could work physically very well as a three-dimensional hologram. If we have a
three-dimensional network of neurones, in which each neurone is connection
10 .a few adjacent ones, and if a neurone in a certain layer, in receiving a
signal, will send this on to a few neurones in the next layer, then signals
will propagate in this network as a wave propagates in an e¢lastic medium.

- If, moreover, the ability of the neurones to propagate received signals can be
permanently enhanced by frequent use, then the network must act as a three-
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dimensional hologram, with a storage capacity of the order of thc number of
neurones present in the network .

(For a more complete exchange between Willshaw' et al."and van Heerden see
Pribram, 1971, pp. 153-157).

Despite Van Heerden's argument, for a time visual. sc1ermsts became engaged
in showing that the idea of a global Fourier holographlc transformation was
untenable. But neurophysiologists (Pollen, 1971; Pribram et al., 1973; Robson,
1975) had, from the beginning, insisted that the spread function — the spectral,
holographic-like process — was limited to patches of single, albeit overlap-
ping, spatially restricted, receptive fields. Engineers (see Bracewell, 1989, for
review) soon showed that patch holography could and did produce coherent three-
dimensional images when inverse transformed, a techmque that became basic to
optical image processing in tomography.

These advances in understanding ‘did not immediately register_when it came to
discussions of possible neural implementations of a primarily optical information
process. Thus, Crick (1994) reasserted his earlier opinion that “nothing resembling
a Fourier transformation exists in the brain,” and Churchland (1986}, reflecting
the received opinion of the neuroscience community, rioted that “the brain is like
a hologram inasmuch as information appears to be.distributed over a collection
of neurons. However, beyond that, the holographic idea did not really manage to
explain storage and retrieval phenomena.”

We disagree with Churchland. A large body of ewdcnce has accumulated over .
the past decades that maps visual cortical function in terms of the constrained.
Fourier process. DeValois and DeValois (1988) presented an extensive review of
the evidence, much of it their own, in favor of a spectral Fourier-like description
of the receptive field properties of cells in the primary visual cortex. In a similar
manner, Vadim Glezer reviewed his and other Russians’ work on the spectral
holograhic-like receptive field properties of visual cortical cells in his book, Vision
and Mind (1993) (see also Pribram, 1991).

We believe that these disparate views are due to a failure to take-into consid-
eration the level or scale at which processing is being investigated: The focus of
Churchland’s inquiry is the neural circuit, whereas it is at the level of synaptodend-
ritic processing that holographic-like transactions among fluctuating hyper- and
depolarizations can take place (see Shepherd et al. 1985).!

Level of processing is largely ignored even in massively parallel neural net
simulations, the focus of Churchland’s evaluation: What needs to be emphasized
is that it is the weighting of connections between “neurons” as, for instance, in
encoding the phase relations among neural hyper- and depolarizations — not the
amplitudes (discharges rates) of neurons themselves — that provide the distributed
processing necessary to learning. This is not to deny the importance of assemblies

! The retina works almost exclusively on the basis of such continuous hyper- and depolarizations.
Only when processing reaches the ganglion cell layer are sustained spikes generated. Nerve impulses,
spikes, then transmit the information generated by the retinal process to the brain,
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of neurons operating as. modules (e.g. Pribram, 1991; Favorov-and Kelly, 1994a, b) -
or that of systems in neural “information processing”. The clinical syndromes of
agnosias due to localized cerebral lesions indicate that information retrieval from
stored memory is accomplished by virtue of systems:localized in one or ancther
region of the brain. This difference between processing at the level of systems and
that which occurs at-the level of dendritic receptive fields (within modules):can be
conceptualized in terms of .a surface structure operating on & deeper, distributed
processing web (Pnbram 1997).

‘Direct. recordmg of the electrical -activity within the dendritic receptive ﬁelds
is difficult. -But a technique for mapping the dendritic conﬁgurat.lon of responses
to sensory stimulation of a single neuron has been available and in constant use
since 1953. In that year Kuffler (1953) showed that he could map the dendritic
field of a retina} ganglion cell's axon located in the optic nerve. By stimulating a
receptor or aset of receptors in a variety of dimensions and using the density of unit
responses recorded from axons, the configuration of the functional responsivity of
the synaptodendritic receptive field of each axon are obtained. o

Using Kuffler’s technique, maps of the receptive fields of: dendritf_:s of neurons
located in the .primary visual cortex were shown to conform to Gabor wavelets
{constrained sinusoids) rather than to simple Fourier transformations of the stim-
ulus (Barrett, 1969, 1973; Daugmiin 1990; Marcelja, 1980; Pribram, 1991; von der
Heydt et.al;1992). Gabor, (1946), working to determine the. efficiency with which
a telephone message could be sent across the Atlantic cable, had noted that there
was a limit to the compresmbxhty of an intelligible phomc 51gnal Mathemam:ally
this limit was a half of a wavelength.

To reach this conclusion, Gabor utilized a phase space in’ whzch one axis repre-
sented frequency, the other time. Whereas most analyses represent -data in terms
of either frequency (holographic-like spectrum) or time (Minkowsky spacetime),
the phase space utilizes both frequency (spectrum) and time (spacetime). Specifi-
cally, Gabor used a Gaussian envelope to constrain the spectrai (frequency) domain
because the Fourier transform-of a Gaussian is also a Gaussian. '

In Gabor’s own words:

Fourier’s theorem makes of description in time and description by the spec-
trum two mutually exclusive methods. I the term ‘frequency’ is used in

 the strict mathematical sense which applies only to infinjte wave-trains, a
‘changing frequency’ becomes a contradiction in terms, as it is a state-
ment involving both time and frequency. The terminology of physics has
never completely adapted itself to this rigorous mathematical ‘definition of

- frequency’. For instance speech and music have a definite ‘time pattern’ as

“well as a frequency pattern. It is possible to leave the time pattern unchanged,
and double what we generally call ‘frequencies’ by playing a musical piece
on the piano an octave higher, or conversely, it can be played in the same key,
but in different time.” (p. 431)
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The finding that Gabor wavelets better represented the configuration:of the
receptive fields of cells in the visual cortex solved the problem posed by the
fact that ideally, the Fourier transform extends the frequency domain to infinity
which is neurologically infeasible.> On the other hand, the phase space represen-
tation-includes spacetime and therefore “seduces™ one toward thinking. soiely in
spacetime terms. _ : - :

.The finding. that Gabor wavelets accurately represent the maps- of receptwe
fields of cells in lhe primary visual cortex, make it possiblé that processing occurs
largely in: orchnary spacetime configuration space or largely in holographw like
spectral form — or simultaneously in both. In earlier experiments. using brain elec-
trical stimulation we showed that, at both the lateral geniculate and the cortical
level, the inhibitory surrounds and flanks of receptive fields could be augmented
or-diminished: Inferior temporal lobe and putamen stimulation increased the. inhib-
itory surrounds; anterior frontal Jobe and caudate nucleus stimulation practically
wiped out these surrounds (Spinelli and Pribram, 1967; Lassonde et al., 1981}
The surrounds were 1nterpreted to.be represented by the Gaussian envelop of the
Gabor wavelet which suggested that when the surround was maximized, processing
proceeded in the spacetime domain; when the surround was minimized, processing
emphasized the spectral domain and was more holographic-like- (Pribram;, 1991,
Lecture 10 and Epilogue). On thelbasis of these results, our view.is that both types
of processing occur and that we need to firmly establish the level at which, and the
conditions under which, one or the other type tends to dominate. :

To accurately define the level, or scale, at which we are working, our ﬁrst stcps
were to study the timing of the relationship between the magmitude of the dendritic
depolarizing process and the axonal spikes of the same neuron that ordinarily make
up recordings of unit activity. These experiments inquired whether, indeed, the
axonal spikes can reasonably be viewed as representations of dendritic recepnve
field maps.

Next we investigated the possibility of rnappmg purely spectral parametcrs of
a sensory input by ploiting the number of spikes generated by varying both that
input’s spatial and temporal frequency. The response maps show the surface distri-
butions of the magnitudes of depolarization within the dendritic receptive field of .
the neuron(s) as gauged by the spikes per second that are correlated with these
magnitudes. S

Finally, we simulated these distributions by computer progmmls' to determine
their fit to a Gabor function. '

-

2 Gabor pointed our that his use of the phase space (a Hilbert space) was identical to this use by
Heisenberg in microphysics. Therefore he labelled his wavelets, “logons” or “quanta of information.”
He warned that this use indicated only that the relationship was formally the same and did not mean
that the communication of information was taking place at the quantum level. The same caveat
applies, of codrse, to the finding that the receptive fields of visual cortical neurons can be mapped as
Gabor waveiets.
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~ The rat somatosensory system was chosen for convenience and because the -
relation between whisker stimulation and central neural pathways has been extens-
ively studied (Armstrong-James, 1995; Simons, 1995). The whisker system has
the- putative advantage over the visual system that greater control over the spatial

location of receptors can be exercised. However, as noted by Simo‘ns (1995), ... In
its function the whisker field may be more similar to a continuous  receptive sheet
~ like skin or retina, than its- punctate anatomical structure might suggest” (268)
Also, in this modality as in our studies in vision noted above there is a good- deal

of evidence that the classical receptive field propertles are altered by extra-field -

_ stimulation (Paradisio et al,, 1996; Vidyasagar and Henry, 1996).

2. Methods

Whiskcrs were stim@lated- by means of a set of rotating textuljéd cyl'inders, gach -

grooved with equally spaced teeth, the tooth width and grooves subtending equal

angles. (The rotating cylinder were meant to mimic the drifting of gratings' across -

the retinal receptors in .vision.) The cylinders were rotated counter-clockwise
against the right whisker airay so that the whisker(s) were deflécted posteriorly

and rebounded anteriorly. Three cylinders (2cm. In diameter and 5 cm. In length)

were used-with grooves and teeth each measuring 30°, 15°, and 7.5°; respectively
(coffesponding to 12, 24 and 48 teeth/cylinder). These textures were approximately

the same as the coarser of those used by Carvell and Simons (1990). The cylinders '

were rotated at 8 different speeds varying from 22.5 deg/sec to 360 deg/sec.
Whlskers were ‘identified according’to accepted nomenclature. In 32 expen—
ments [in 25 rats] single whiskers were isolated and stirmulated: addltlonally, in'23
of these experiments a roup of four to six primary whiskers comprising portions of
one or two columns of the mystacial pad was in contact with the rotating cylinders.
(This was done in order to bring the results of these somatosensory experiments
into register with those performed in the visual system where an entire array of
receptors is stimulated by drifting gratings.)
~ Electrodes were Teflon coated stainless steel (Haer) ranging in 1rnpedence
between 1 and'3 megohms. The electrodes were implanted with the rat under
intraperitoneal barbiturate anesthesia (50 mg/kg) with 0.05 ml subcutaneous

atropine sulfate to suppress excess bronchial secretions. The rat was placed in a

stereotaxic headholder, and a small (.5 cm.) round opening was made in the skull.
A microelectrode was lowered stowly through the opening at approximately 4 mm
posterior and 4-5 mim lateral to bregma by means of a hydraulic micromanipulator

until.good unit responses were recorded; usually at-a depth of approximately 600-

700 micra. Histological examination showed the electrode tracts to end in laycr v
of the somatosensory cortex.

-Records of raw data were obtained by means of an FET cathode follower which
matched the impedence of the microelectrode to the input impedence of a Grass
Model P5. The recorded signal was band limited between 300 and 3000 Hz,,
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and amplified with a gain 20,000. One hundred seconds of continuous ‘voltages
sampled. at the rate of 32,000 samples per second were digitized and stored via
a BRAINWAVE (DataWave, Inc.) system onto a4 PC-486 computer, The raw data
were then transferred for processing in a Silicon.'Graﬁnhics workstation. Approxi-
mately 1/3 to 1/2 gigabytes of data representing both single spikes and bursts of
spikes were recorded at each cortical location. Our data include both single and
multi-unit activity — that is, single spikes and bursts of spikes. When single spikes
were used, their ongln from a single neuron wis ascertained by a sorting procedure
using template matching based upon spike amptitude and recovery slope. {We used
recovery slope rather than ascending slope because we found ascending slope to
be highty positively correlated with amplitude.) More often we used multi-unit
bursts of spikes, cspemally during whisker stimulation since our records show a
great deal of superposition of spikes (defined in terms of a spike arising during the
ascending or descending siopes of another spike) during such bursts. Furthermore,
the number of miilti-unit bursts increase dramatically during stimulation.. On the
average (durmg a’100 sec()nd record) the baseline has 350° 1solatf:d smgle spikes,
152 bursts, and 26 superposmons the stimulation record has 265 sp1kes 2 18 bursts,
and 307 superposmons

2.1. RELATION BETWEEN. SINGLE AND MULTI-UNIT ACTIVITY

As our analy ses were derwed from both multl unit bursts and from smg]e unlts we
sought to determine the relationships between the surface distribution maps derm,d
from multi-unit bursts and those durlvud from single units-composing the bursts.

In nine experiments, single whiskers were isolated and stimulated. Whiskers were
identified according to accepted nomenclature as described by Simons (1978). In
our analyses of four such records, we found that the surface distribution constructed
from multi-unit bursts encomipassed those of the individual units composing the
bursts: For instance, a burst-produced distribution surface appears to be composed
of surface distributions from the four single unit which compose that burst. The
four single-unit distributions show a gradual change in shape corresponding to
slight changes in location within the burst map. The figures describing these results
are available from the authors.

3. Results

3.1. THE FIELD/SPIKE DUAL

We obtained evidence that we are indeed mapping the varying magnitudes of the
fields of electrical activity which we assume to be occurring in the dendrites of the
neurons from whose axons we are recording spikes: Multi-unit bursts of spikes (as
well as individual action potentials) were recorded with a high pass filter and simul-
tancously with a low pass filter (see also Verzeano er al., 1970). This procedure
allowed -us to compare the time course of the recordings provided we adjusted for
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the relative delay produced by the low pass filter. In our recording apparatus this
detay amounts to 8-10 msec. Figures la and }b show that the onset of the field
effect precedes or co-occurs with that of the initiation of spikes. Spike occurrence
becomes most likely just prior to the occurrence of the maximum amplitude of
the depolarizing field and ceases as the field decays (Figure 1b). Out of 2,369
field/spike recordings,_ 1,573 or 61% showed this relationship; when recordings
made during sensory stimulation were separately considered, the ratio went to
75%. The remaining cases were made up of 796 instances where the field effect
was recorded Withoiit any evidence of comrelated spike activity.

3.2. THE CONFIGURATION OF THE AMPLITUDES OF SURFACE DISTRIBUTIONS

Fifty-five maps were constructed. of the number of bursts or spikes per 100 seconds
of stimulation generated at each spectral location as determined by the spatial and
temporal parameters of an input.” According  to our assumption of the field/spike
dual, the spike activity above or below baseline’ which resulted from whisker
stimulation represents a surface distribution of the amplitudes of local dendritic
potentials. Spatial frequencies of the structure are scaled in terms of grooves
per revolution, while temporai frequencies are scaled in terms of revolutions per
second. Both are plotted on hormalized axes. Thus, the density of stimulation of
a whiskér (or set of whiskers) is a function of both the spacings of the cylinder .
grooves and the speed with which the cylinder rotates (Figures 2a and.b, 3aand b
and 4z and b). These parameters co-determine the rate at which a whisker (or set of
whiskers) is flicked. If flick rate were critical, an equal flick rate ought to generate
an equal number of spikes or multi-unit bursts irrespective of whether the flicks
are produced by the spatial (texture} or the temporal (rotation speed) stimulus.
For instance, if flick rate were critical, a cylinder with 24 grooves rotating at one
revolution per second should generate an equal number of spikes and the same
surface distribution of local field potentials as a cylinder with 12 grooves rotating
at two revolutions per second. This expectation was not fulfilled, most likely due
to the fact that 2 change in rotation speed results in a change in acceleration of
whisker defiection, which a change in the spacing of grooves does not. Thus, the
three-dimensional mapping of the surface distribution of the amplitudes of local
field potentials is asymmetrical with respect to the spatial and temporal axes of the
stimulus. Representatives of the 35 maps are shown in Figures, 2, 3, 4.

4, Simulation

In order to discern whether, indeed, our data fit ordinary signal processing
procedures, a simulation of the experimental method was executed.

* Our baselines were composites of 100 sec of pre- and 100 sec of post-stimutation recordings.
In n separate study (Xie, M., er @l., 1994} using the same baseline data, we showed the spike trains to
ke siehastic (und, in longer runs, stationary), not deterministically chaotic.
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Figure Ja—b. Figure lais an example of the 're}ationship between spikes and-mult- unit burts
to coincident local field potentials, Figure 1b shows this relationship over 1, 573 bursts. The
peak of the slow potential is marked zero. Note that the ascending stope of the field potentials
precedes that of the spikes and bursts. If the field potentials were a conseguence of the burst,
the peak should coincide with or come later than the maximum number of bursts.




-

SPECTRAL PROCESSING IN BRATN CORTEX : 337

fig. 42 deva surface - fig. 45 data surface

2} I . :
5800y - i“' T e
2 S —. .
B ol S

E 9= s n ] /
B 08 T o5 ' o4 06

S.F (teelbfcm) L T.F. (teethjnec) T.F (luel]‘u.'wc}

ﬁg 4c s:mumed surface . fig. dd.simulated sarface

number of bursts
8 8 8

Cos “os - Tt
i R . ‘ |33 a2 04 0.5 0% 1
8. F (:eeﬂl‘lfcm) . T. F. {leeth/sec) . TE. teethlsec)

fig. 4¢ difference surface : . fig. 4f difference surfuce -

)

S. F_{1eethicm)

number of bursts
[ =]
8

0.5 05 !
S.F.qeetvem)y - 0 P T.F geethser)
;

Figure -2, 3, 4. Examples of ioca} field surface distributions {2a, 3a, 4a} and their associated

- contour maps (2b, 3b, 4b) derived by cubic interpolation {spline} procedure from recorded
whisker stimulation. The contour map was abstracted from the surface distribution by plotting
contours in terms of equal numbers of bursts per recording interval (100 secs.). Each figure -
shows baseline activity (no whisker stimulation) at a given electrode location as a plant tacated

in terms of number of bursts per 100 secs. The x axis represents temporal frequency (T.F) in
revolutions per seconds (RPS}. The y axis represents spatial frequency (S.F.) in terms of the
number of flicks per revolution (Flicks/R). Figures 2c, 3¢ and 4¢ are examples of simulated
surface distributions of Tocal field potentials and their-associated contour maps (2d, 3d, 4d)

10 be compared with the empirically derived maps presented in Figures 2a&b, 3ad& b, and
4a & b. Figures 2e and f, 3¢ and f, and 4e and f show the difference between the surface
distributions mapped: from the data and those mapped from the simulations, Note that the
coordinates of the difference maps range from 0 upward while those of the surface distributions

mapped from data and simuiations range from a much higher level upward.

0.6
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4.1. FRAMING

The first stage of the simulation was to construct a putative map of the surface
distribution of fluctuating amplitudes of locat field potentials in patches of cortex.
In order to provide a pattern of peaks and vaileys similar to that shown by our data,
we chose a rectangular window in the spatiotemporal domain 1o constrain a two
dimensional sinusoidal signal, because when the extent of the signal is pruned of
noise, a rectangular region is obtained in the results of experiments recorded from
visual cortical neurons (Gaska et af., 1994). In addition, the rectangular window
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allows for maximum resolution of frequencies (Zeevi and Daugman, 1981). The
use of such a window generates a sinc function in the spectral domain.*

In our simulations, each plot shows the surface distribution of a spectral density
function of a rectangular windowed two-dimensional sinusoidal signal. When, in
other experiments, only a single frequency of stimulation is used, a spatial “connec-
tion” matrix can bé constructed from recordings made with multiple electrode
arrays to represent the data (Barcala et al., 1993; Chapin er al., 1996; Nicolelis
et al., 1996; Ahissar et al., 1996, McLaughlin et al., 1996). In our version of such
a matrix, the surface distribution of the amplitudes of local field potentials in a
patch of cortical tissue can be conceived to aet as an “ideal” filter which processes
- incoming sxgnals TIus ideal filter when activated gencrates 2 smc function which
is defined as: : :

sin(w)

sinc{w) =

(1

for all values of the spectrum that activate the filter (Kamen, 1990).
As we used two parameters of stimulation, spatial and temporal frequency, the
sinc function becomes two dimensional as follows:

F(wi_,yg)~=-A sin c(wi)sin i‘(wz) (2)

for all values within the range of values specified for (1) above, and where w,
and w; correspond to the reprcsentation of spatial and temporal frequency in the
computational space.

In simulating our data, the sinc function must, therefore, be defined for 2 range
of stimulus parameters within a computational space in which an‘incoming signal
is processed. Each signal generates a sinc function within that space, the peak of
which will be located at some given temporal and spatial value. Therefore, the
actual sinc function generated by each two-dimensional signal will be displaced
from the origin of the computational space by the difference between the spec-
tral frequencies which define the computational space and the actual frequencies
generated by the incoming signal. The sinc function produced by the incoming
signal will thus be defined by:

Flew;, wy) = A sin clw| — wpy)sin cf{ws — wgs) - 3)

where A is a scaling constant, w, and w; are spatial and temporal frequencies of
the computational space, and wg; and gy are the spatial and temporai frequencies .
of the signal.

4 We experimented with other types of window such as a Gaussian function and found little
difference in the results of simulation: the sinc function provided somewhat sharper boundaries
between the various isopotential representations. '
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Systematically changing the parameters of stimulation, therefore, serves to
systematically “move” the sinc function generated by the incoming signal within
the computational space in which-the signal is processed.

4 2. SAMPLING

The second stage of the simulation adds another axis to the computational space hy
taking a limited sample of the sinc function using a Gaussian function. In vision,
convergence of yisval-nerve fibers onto the lateral geniculate nucleus has made it
possible to conceive of each geniculate cell as acting as a “peephole” sampling
a part of the retinal mosaic (Pribram, 1991, p. 74; Hashemiyoon and Chapin,
1996). In the somatosensory modality, a similar convergence onto the principle
nucleus of the trigeminal nerve in the brain stem makes it possible to consider
the cells in the ascending trigeminal pathway as sampling the mystacial mosaic.
The Gaussian represents such a sample, a peephole, and has the advantage that its
Fourier transform is also a Gaussian and thus can be readily applied to the spectral
domain. When this sample represents the output of a single neuron it is limited
by the spatial extent of the local field potentials fluctuating among that neuron’s
dendrites. When a surface distribution is modeled from multi-unit bursts, the spatial
constraint is assurned (o portraysa greater reach. Sampling, which manifests as a
point process, is performed by the generative activity of the axon hillack, which,
due to the upper and lower temporal limits of spike generation, functions as a
bandpass filter. This filter is multiplied with the sinc function to yield a display
of the surface distribution.

Figures 2c and d, 3¢ and d and 4¢ and d depict distribution and contour maps
derived from these simulations. Note the ciose fit to the experimentailly derived
surface distributions and contours shown in the difference manifolds of Figures
2¢ and f, 3¢ and f, and 4e and f. Statistical analyses are presented in Table [. As
noted, a total of 55 surface distributions were experimentally generated. Of those
three were essentially flat. Of the remaining 52, we simulated six; all but two of
the remaining 46 have a shape that can be seen to be successfully simulatible with
the technique described.

8, Discussion

To summarize: We simultancously recorded neuronal spike -activity and field
potentials from 25 rats, and the results showed the density of spike activity repre-
sented the distribution of field potentials. Then, using simple spikes and bursts
of spikes, we mapped the distribution of receptive dendritic field potentials in the
somatosensory cortex generated by rotating grooved cylinders.

The surface distributions denived from our data are constructed of two ortho-
gonal dimensions: one dimension refiects the spatial frequency of the stimulus
and the other its temporal frequency. Because spatial and temporal variables
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visual cortex (Daugméh 1990; Pollen and Taylor, 1974; Pribram and Carlton,
1986: Pollen and Gaska, 1997). This suggests that such a proces‘;mg medium is
ubiguitous in cortical networks

6. ']I‘he Complex Ferm of Gabor Functions and the Hmpor&ance of the Phase
 Spectrum

A recent review by Tai Sing Lee (1996) continues and.expands the simulation
procedures " Bégun "in our experiments and specifies the phase space sampling
schemes needed for image reconstruction. Lee Succinctly recapitulates and brings
up to date the evidence as presented originally by Gabor (1946) and reviewed with
respect 10 brain processes by Pribram (1991} (bold ours):

On the theoretical side, [the] important insight ... advanced by Marcelja
(1980) and Daugman {1980, 1985), [is] that . ... cells in the visual cortex can
be modeled by Gabor functions [which can be used as a starting point for
developing a theory of efficient reconstruction of an image]. The 2D Gabor
functions proposed by Daugman are local spatial bandpass filters that achieve
the theoretical limit for conjoint resolutxon of 1nf0rmat10n in the 2} spatial
and 2D Fourier domams
Gabor (1946) showed that there exists a “quantum principle” f_mj- informa-
tion: the conjoint time-frequency domain for 1D signals must necessarily be
quantized so that no signal or filter can occupy less than a certain minimal
area in it. This minimal area, which reflects the inevitable trade-off between
time resolution and frequency resolution, has a lowér bound in their product,
1 analogous to Heisenberg's uncertainty principle in physics. He discovered
l that Gaussian-modulated complex exponentials provide the best trade-off. The
original Gabor elementary functions, in the form proposed by Gabor (1946),
l are generated with a fixed Gaussian while the frequency of the modulating
wave varies. These are equivalent to a family of “canonical” coherént states
‘ gencrated by the Weyl-Heisenberg group .. . . A signal can be encoded by its
projection onto these elementary funcnons Thls decompomuon is equivalent
! . to the Gaussian-windowed Fourier transform . '
_ Daugman (1980, 1985) generalized the GdbDI‘ function to the following
] 2D form to model the receptive fields of the orientation-selective simple
cell ... . The 2D Gabor function is.a product of an elliptical Gaussian and
\ a complex plane wave. The careful mapping of the receptive fields of the
\ visual cortical cells by Jones and Palmer (1987) confirmed the validity of
| this model, Mathematicaily, the 20 Gabor function achieves the resol-
[ ution limit in the comjoint space only in its complex form. Since a
[ complex-valued 2D Gabor function contains in quadriture projection an even-
symmetric cosine component and an odd-symmetric sine component, Pollen
and Ronner’s (1981) finding that visual cells exist in quadriture-phase pairs
therefore showed that the design of the cells might indeed be optimal. The
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fact that the visual cortical cell has evolved to an optimal design for infor-

mation encoding has caused a considerable amount of excitement not only
~in the neuroscience community but in the computer science community as

well. Gabor filters, rediscovered and generalized to 213, are now being used
-éxtensively in various computer vision appllcatlom (Bowk et al., 1990' Lee
etal., 1992),

Neurophyelologlcal evidence (DeValois-and DeValois, 1988) suggests that
the spatial structure of the receptive fields of visual cells having different sizes
is-virtually invariant. Daugman (1993) and others (Bovik er af., 1990) have
proposed -that an ensemble of such ceils is best modeled as a family of 2D

" Gabor wavelets sampling the frequency domain in a log-polar mannes: This
class is equivalent to a family of affine coherent states generated by the affine
group. The decomposition of an image finto these states is called the wavelet

transform of the image ... . A particular Gabor elementary function can be
used as the mother wavelel to generate a whole famlly of Gabor wavelets.
(1-2) -

By numerically computing the frame bounds for this family of wavelets in different
phase space sampling schemes, he finds that the phase space sampling density
provided by the visual cells in the primary visual cortex is sufficient to form an
almost tight frame that allows stable reconstruction of the image by linear super-
_ positionof the Gabor wavelets. Running his simulations; Lee-(1996) came up with
a surpnising conclusion: “. .. two to three orientations are sufficient for complete -
representation of the image” (p. 11). Further:

.. there are at least two advantages to such a redundant representation: first,
an image can be represcnted and casily reconstructed as a linear superposition
of the receptive field structures of the visual cells weighed by their firing
rates; second, high precision information can be computed and stored by a
population of low-precision neurons. (p. 12)

Lee then asks whether the surplus redundancy in representation could be due to
a limitation in a neuron’s ability to transmit only three or four bits of information. In
fact, temperal coding carried in the spike train of a single neuron is-more often 172 a
bit or less (Richmond and Opticon, 1987). Thus, the dendritic fields of visual celis,
modeled by Gabor wavelets, with surplus redundancy provide an ideal medivm
for representing surface texture and surface boundary with high resolution. The
amount of redundancy provided by extreme oversampling in a tight frame may be
éxaggerated in the Lec stmulation. When more than a few stimulus components are
being sampled, this density of sampling is necessary to providing fidelity.

Important for us is that, as noted by L.ee, Gabor functions, unless they encode
complex representations of frequency, do not fully describe the potential of these
surface distributions, the *ideal filter.” Phase encoding is necessary for faithful
reproduction of the stimulus. Amplitude encoding, as provided by correlations
performed by non-holographic associative networks, provides only a gross approx-
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imation to the stimulating. surface (Caelli and Hubner, 1983 as quoted in Pribram, -
1991, Figure 2.5, p. 37; Oppenheim and Schafer, 1989).

An excellent simulation using Gabor functions has been developed by Chris-
toph-von der Malsburg and his group in a dynamic link architecture (Lades et
al., 1993) Their network achieves image processing via computations similar to
those described here: they use Gabor wavelets to compose a linear filter operation -
in which an image is convolved with a family of wavelets. This family is self -
similar under the application of the group of translations, rotations, and scaling.
This procédiire wis-also proposed by Pribram (Carlton, 1988; Pribram and Carlton,
-1986; Pribram, -1991). to. deal with the perception of objects. However, Pribram
.based-his proposal on a four-dimensional rather than a two-dimensionat dynamic. °
Critical to.his proposal is movement, which the van der Malsburg group pomt out
is the next step to be considered in their simulation. _

Bell and Sejnowski (1996) confirm the importance of phase encoding in
terms of the advantages of an independent component analysis (over a pnnc1pal '
component analysis) (underline ours):

The failure of correlation-based [processing] is most clearly shown by the‘
filters they produce when trained on stationary ensembles of signals. The
- filters  are typically.-.global ..., sensitivé to different spatio- or temporal °
frequencies, but with hon-zero weights extending throughout the filter. They
* reflect only-the amplitude spectrum -of the signal and ignore the phase spec-
trum where most of the suspicious local coincidences in natural signals take
place. An edge in an image, for example, is a coincidence in the phase spec-
trum, since if we were to Fourier analyse it, we ‘would see many sine waves
of different frequencies, all aligned in phase where the edge occurred .
~ To illustrate formally that second-order statistics only carry 1nf0n‘nat|0n
about the amplitude spectrum, consider the autocorrelation function of a
signal, which contains all its second-order structure. The Fotirier transform
of this is the power spectrum, which is the square of the amplitide spectrum.
Thus the two carry identical information.

To demonstrate intuitively that what we consider as the informative part
of a natural signal is captured in the phase spectrum, Fourier transform the
signal, remove the phase information, and transform it-back to the space
or time domain. It -will then lock or sound like noise, typically with a l/f
amplitude spectrum. All the visual or auditory features that our perceptual
system thinks.of as ‘signal’” will be lost. On the other hand, if we remove the
amplitude information, and preserve the phase, the signal will be distorted but
remain recognisable. (sic.) _

This points to a curious paradox: correlation-based learning aigonrhms
are sensitive to exactly the part of natural signals which we regard as least
meaningful (amplitude), and ignore the part of the signal which we find most
meaningful (phase). To encode the phase of signals, we need an algorithm
that is sensitive to higher-order statistics. (261-262)
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- Independent component analysis thus provides a readily accessible technique to
implement the findings of Caelli and Hubner and augments the argument made by
van Heerden (albeit in a learning rather than a recognition context) quoted in the
introduction. Independent Component Analysis, by being sensitive to higher order -
statistics provides the procedure necessary for recording phase encoding in elec-
trical recordings of brain activity — an essential requirement if cortical processmg

is mathematically at all like that of an optical hiologram.

7.. Conclusion

Research using extracellular microelectrode recording allows the mappmg of dend-
ritic surface distributions .of field potentials. Such mapping has shown that Gabor
wavelets provide a reasonable fit to surface distributions recorded from primary
visual cortex. In the current experiment, we have obtained evidence for a similar fit
between surface distributions of dendritic field potentials and Gabor functions in
the primary somatosensory -barrel cortex: This finding suggests that Gabor func-
tions or some similar Hermite polynomials are good descriptors of the surface
distributions of dendritic field potentials in sensory cortex. These functions encode
complex representations of the sensory stimulus. Complex representations imply
that phase is an essentidl attribute to edge and texture representation. If this is

507 the Tiext step in research needs to demonstrate that transient phase locking to-

periodic stimulation -occurs in such surface distributions in order that such details:
as edges can be extracted.-from scenes.

8. ]Impllcatlons for ]Future Research

The neurophysmloglcal communlty has come to terms with the dlsmbuted nature
of what can be conceptualized as the “surface structure” of cortical processing
(Pribram, 1997). The accepted view is that distribution -entails the necessity
of binding together the disparate sites of processing. Binding is accomplished
by temporal synchronization of spatially distinct oscillating neural processes.
However, as Steven Schiff (Fitzgerald, 1999) has pointed out: “All really interesting
things that go on in the brain happen in states of partial synchrony™ (17). Such
partial synchronization is best represented by transient phase locking. To date, the
emphasis has been that under the conditions which produce binding, no phase lead
or lag is present (see the interchange betweéen Jay McC]e!la_nd and Pribram, 1998,
pp- 551-556). More recently, using EEG recordings, Varela (Lachaux, Rodriguez,
Martinerie and Varela, In Press) and his group have shown transient phase locking
to occur only at the moment a person perceives a recognizable figure. Taking
such experiments a step further, Bressler (1994) has traced the paths of phase
synchronization during performance of a visual discrimination task.

At the microelectrode level of recording (conceptualized as the deep structure
of cortical processing, Pribram, 1997), Saul and Humphrey (1990, 1992a, b) have




= L

SPECTRAL PROCESSING IN BRAIN CORTEX ' 345

found cells in the lateral geniculate nucleus that produce Iphase lead and phase lag
“in the cortical processing initiated by them. In the somatosensory system, Simons
and his group (Simons, 1995), have analyzed the timing of the thalamocortical
process to show how it enhances “preferred” features and dampens “non-preferred”
ones — that is, to show how it sharpens sensory discrimination. They have used
single pulse stimuli in- their experiments. As one of the postdoctoral students in
their group pointed out, were periodic stimulation used, their timing coincidence
would amount to phase locking. In fact, most natural sensory stimulation is peri-
odic ... othérvise rapid adaptation cancels out sensation. Currently, recordings
made with multiple microelectrodes and data analysis with sufficiently powerful
computers makes it possible to more readily obtain additional data of this sort and
to determine the conditions under which phase — and not only amplitude — encoding
occurs. These are definitive steps in bringing the neural network (PDP) simulations
to include spectral processing, steps that help realize the promise articulated by Van
Heerden {quoted in the introduction) in understandmg the functions of the brain in
perception and memory prowdcd by the holographic process..
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