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Abstract. This study describes the results of experiments motivated by an attempt to understand
spectral processing in the cerebral cortex (DeValois and DeValois, 1988; Pribram, 1971, 1991).
This level of inquiry concerns processing within a restricted cortical area rather than that by which
spatially separate circuits become synchronized during certain behavioral and experiential processes.
We recorded neural responses fo\- 55 locations in the somatosensory (barrel) cortex of the rat to
variQus combinations of spatial frequency (texture) and temporal frequency stimulation of theIr
vibrissae. The recordings obtained from single and multi-unit bursts of spikes were mapped as surface
distributions of local dendritic potentials. The distributions showed a variety of patterns that are
asymmetric with respect to the spatial and temporal parameters of'stimulation, and were, therefore,
not simply reflecting whisker flick rate. Next, a simulation of our results showed that these surface
distributions of local dendritic potentials can be described by Gabor-like functions much as in the
visual system. The results 'provide support for a model of distributed cortical processing that imposes
a physiologically derived frame (the limited extent of a dendritic patch) and an anatomically derived
(axonal) sampling of the distributed process. This combination provides a complex Gabor wavelet
that encodes phase, which is necessary to processing such details as edges and texture in a scene. The
synchronization across cortical areas that make the Gabor wavelet processes within restricted cortical
areas available to one another (the binding problem) proceed at a "higher order" level of integration.
Both levels of distributed processing accomplish computation in the conjoint spacetime and spectral
domain.
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1. ][ntrodlUllctiolll

In the mid-1960s, Leith and Upatnicks (1965) found ways to produce optical
holograms using the mathematical formulation proposed by Dennis Gabor (1948).
Engineers (e.g. van Heerden, 1963), psychophysicists (e.g. Julez and Pennington,
1965) and neuroscientists (e.g~, Barrett, 1969; Pollen, 1971; Pribram, 1966) imme
diately saw the relevance of holography to the hitherto intractable issues of brain
function in perception (e.g., constancies) and memory (e.g., distributed store).
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This early promise was temporarily derailed by the advent of computer
friendly associative nets based on massively parallel programming architectures.
For example, Longuet-Higgins and his group, inspired by Crick (Willshaw et ai.,
1969), proposed that a non-holographic amplitude modulated associative memory
model based on correlations (that did not rely on phase encoding) could handle a
large storage capacity and efficient representatioIial memory. On the other hand,
van Heerden (1970a & b) noted that holographic (distributed spectral) principles
account for aspects of perception that cannot be addressed by non-holographic
associative nets.. Van Heerden used a holographic process that encodes coherence
(in which th~ phase spectrum is preserved) rather than just correlation. Indeed, the
argument is best presented in his own words:

Willshaw, Buneman and Longuet-Higgins have proposed a nonholographic
associative memory model for the brain (Willshaw et ai., 1969, p. 9601).
They also criticize the proposal made by myself (va,n Heerden, 1963, p.
393) and by Pribram (1966, 1969) that the brain would be organized on the
holographic principle. They say: "How could the brain Fourier-analyse the
incoming signals with sufficient accuracy ...."

I agree with the contention of Willshaw, Buneman, and LonguetHiggins,
in their response to my communication (van Heerden, 1970), that the asso
ciative net they proposed ,Willshaw et ai., 1969) performs the specified
funj;tions~"as- well as the hologram. Two of the most striking capabilities of
"tiuman memory, however, are not present in their network. The first is our
ability to recognize a person we know, when he appears in our fieId of view,
which may contain a hundred more people. The suddep flash of recognition
... this absolute certainty of "this is he and it can be nobody else" is ... evoked
only by an extremely reliable and fast form of information processing in our
brain. This function of recognizing is also performed by ~the two-dimensional
hologram, as the appearance of a bright light poiIit in the image plane of the
optical arrangement, and the brightness and sharpness of the light point are a
scientific measure of the degree of recognition.

The second capability is our ability, after recognizing'a person, to
recall quickly a considerable amount of the information we have about this
person. In an optical arrangement, the recognition signal given by the two
dimensional hologram provides the instruction for generating total recall of
the relevant information from a three-dimensional hologram .

In a book on the subject (van Heerden, 1968) I discussed how the brain
could work physically very well as a three-dimensional hologram. If we have a
three-dimensional network of neurones, in which each neurone is connection
to.a few adjacent ones, and if a neurone in a certain layer, in receiving a
signal, will send this on to a few neurones in the next layer, then signals
will propagate in this network as a wave propagates in an elastic medium.
If, moreover, the ability of the neurones to propagate received signals can be
permanently enhanced by frequent use, then the network must act as athree-
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dim.ensional hologram, with a storage capacity of the order of the number of
neurones present in the network ...

(For a more complete exchange between Willshaw ei at.· and van Heerden see
Pribram, 1971,pp. 153~157). .. .

Despite Van Heerden's argument, for a time visual scientists became engaged
in showing. that the idea of a global Fourier holographic transformation was
untenable. Butneurophysiologists ,(ponen, 1971; Pribram.et'l:zl" 1973; Robson,
1975) had, from ,the beginning, insisted that the spread function -:-,the spectral,
holographic-like process - was limited to patches of sirigle, albeit overlap
ping, spatially restricted, receptive fields. Erigineers(see Bracewell, 1989, for
review) soon showed that patch holography could and did produce coherent three
dimension~l images when inverse: transformed, a technique that became basic to
optIcal image processing in tomography.

These advances in understanding did not immediateiy register when it came to
discussions ofpossible neural implementations ofa primarily optical information
process. Thus,Crick (1994}reasserted his earlier opinion that "nothing resembling
a Fourier transformation exists in the brain," and Churchland (1986), reflecting
the received opinion of the neuroscience community, noted that "the brain is like
a hologram inasmuch as informlition appears to be distributed over a collection
of neurons. How~ver, beyondthal, the holographic idea did not really manage to
explain storage and retrieval phenomena."

We disagree with Churchland. A large body of evidence has accumulat~d over.
the past decades that maps visual cortical function in terms of the constrained
Fourier process. DeValoisand DeValois (1988) presented an extensive review ·of
the evidence, much of it their own, in favor of a spectral Fourier-like description
of the receptive field properties of cells in the primary visual cortex. In a similar
manner, Vadim Glezer reviewed his and other Russians' work on the spectral
holograhic-like receptive field properties of visual cortical cells in his book, Vision
and Mind (1995) (see also Pribram, 1991).

We believe that these disparate views are due to a failUre to take"into consid
eration the level or scale at which processing is being investigated: The focus of
Churchland's inquiry is the neural circuit, whereas it is at the level of synaptodend
ritic processing that holographic-like transactions among fluctuating hyper~ and
depolarizations can take place (see Shepherd et at. 1985).1

Level of processing is largely ignored even in massively p'~allel neural net
simulations, the focus of Churchland's evaluation: What needs to be emphasized
is that it is the weighting of connections between "neuions" as, for instance, in
encoding the phase relations among neural hyper- and depolarizations - not the
amplitudes (discharges rates) of neurons thems'e1ves - that provide the distributed
processing necessary to learning. This is notto deny the importance of asse!TIblies

1 The retina works almost exclusively on the basis of such continuo~s hyper- and depoiarizations.
Only when processing reaches the ganglion cell layer are sustained spikes generated. Nerve impulses,
spikes, then transmit the information generated by the retinal process to the brain.
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of neurons operating as. modules (e.g. Pribram, 1991; Favorovand Kelly, 1994a, b)
or that of systems in.neural "information processing". The clinical syndromes of
agnosias due to localized cerebral lesions indicate that information retrieval from
stored memory is' accomplished by virtue of systems. localized in one or another
region of the brain. This difference between processing'at the level of systems and
thatwhich occurs at the level.of dendritic receptive fields (within modules) ;can be

. conceptualized in terms of.a surface structure operating on a· deeper, distributed
processing web (p-ribram, 1997). '.

Direct;,recordi~g.of the etectricalactivity within the dendritic receptive fields
is difficult. Hut a technique for mapping the dendritic configuration of responses
to sensory stimulation of a single neuron has been available. and in constant use
.since 1953. In that year Kuffler (1953) showed that he could' map .the dendritic
field of a retinal ganglion cell's axon located in the optic nerve. Bystimulating a
receptor or a set of receptors in a variety of dimensions and using thedensity of unit
responses recorded fromaxons, the configuration of the functional responsivity of
the synaptodendriticreceptive field of each axon are obtained: . .

Using Kuffler's technique, maps of the receptive fields ofdendrites of neurons
located in the ,prirriary visual cortex were shown to conform to Gabor wav~lets

(constrained sinusoids) rather than to simple Fourier transformations of t:Qe.stim
ulus (Barrett, 1969, 1973; Daugm'lm 1990; Marcelja, 1980;·Pribram, 1991; von d(:r
HeY<!Let.al:-;·T992) Gabor (l946), working to determine the:efficiency withwhich
a telephone message could be sent across the Atlantic cable;hadnoted-that:there
was a'limitto the compressibility .of an intelligible phonic signal. Mathematically
this limit was a half of a wavelength.

To reach this conclusion, Gabor utilized a phase space in which one axis repre
sentedfrequency, the other· time. Whereas most analyses represent ·data in· terms
of either frequency (holographic-like spectrum) or timy (Minkowsky. spacetime),
the phase space utilizes both frequency (spectrum) and time (spacetime). Specifi
cally, Gaborused a Gaussian envelope to constrain the spectral (frequency) domain
because the Fourier transform of a Gaussian is also a Gaussian.

In Gabor's own words:

Fourier's theorem makes of description in time and description by the spec
trum two mutually exclusive methods. If the term 'frequency' is used in

. the strict mathematical sense which applies only toinfinjte wave-trains, a
'changing frequency' becomes a contradiction in terms~ as it is a state
ment involving both time and frequency. The terminology of physics has
never completely adapted itself to this rigorous mathematical definition of
'frequency'. For instance speech and music have a definite 'time pattern' as

.' well as a frequency pattern. It is possible to leave the time pattern unchanged,
and double what we'generally call 'frequencies' by playing a musical piece
on the piano an octave higher, or conversely, it can be played in the same key,
but in different time." (p. 431)
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2 Gabor pointed our that his use of the phase space (a Hilbert space) was identical to this use by
Heisenberg in microphysics. Therefore he labelled his wavelets, "Iogons" or "quanta of information."
He warned that this use indicated only that the relationship was formally the same and did not mean
that the communication of information was taking place at the quantum level. The same caveat
applies, of coiJrse, to the finding that the receptive fields of visual cortical neurons can be mapped as
Gabor wavelets.

.The finding that Gabor wavelets better represented the .configuration; of the
receptive fields of cells in the visual cortex solved the problem posed by .the
fact that ideally, the Fourier transform extends the Jrequency 'domain to 'infinity
which is 'neurologically infeasible.2 On the other hand, the phase ~pace'represen

tationincludes spacetime and therefore "seduces" onetoward'thinking, solely in
spacetime terms. ' , " "

The finding. that Ga~or,wavelets accurately represent the 'maps ,of receptive
fields of cells in the primary visual cortex, make it possible that processing occurs
largely in ordinary spacetime configuration space or largely in holographic-like
spectral form- or simtlltaneously in both. In earlier experiments, using brain e1ec~

trical stimulation we showed that, at .both the lateral geniculate .and the cortical
level, the inhibitory. surrounds and flanks of receptivefi'elds could be augmented
or-diminished: Inferior temporal lobe and putamen stimulation· increasedtheinhib
itory surrounds; anterior frontal 'lobe'and caudate nucleus stimulation practically
wiped out these surrounds (Spinelli and Pribram, 1967; Lassonde et al.,1981).
The surrounds were interpreted. to,be.repre~el1te.~ by the GausSia~envelopof the
Gabor wavelet which suggested that when the'surround was maximized, processing
proceeded in the spacetime domain; when the surround was minimized, processing
emphasized' the spectral' domaiil and' was more holographic-like' (Pribram, '1991,
Lecture 10 an~Epilogue).·On the1basis of these results, oUr vieW,is that both,types
of pro<;:essing occur and that we need to firmly establish the leveHlt which, ~d the
conditions under which,oneor the other type tends to dominate.

To accurately define the level, or scale, at which we are working, our first steps
were to study the timing ofthe relationship between the magnitude of the dendritic
depolarizing process and, the axonal spikes of the same neuron that ordinarilymake
up recerdings of unit activity. These experiments inquired whether, 'indeed, the
axonal spikes can reasonably be viewed as representations' of dendritic receptive
field maps.

Next we investigated the possibility of mapping purely spectral parameters of
a sensory input by plotting the number of spikes generated by varying both that
input's spatial and temporal frequency. The response maps show the surface distri
butions of the magnitudes of depolarization within the dendritic receptive field of
the neuron(s) as gauged by the spikes per second that are correlated with these
magnitudes. .

Finally, we simulated these distributions bycomputer program~' to determine
their fit to a Gabor function. "
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. '. The rat somatosensory system was chosen fOfconvenience and because the
relation between whiskerstimulation~nd.central neural pathways has been extens~

ively studied (Annstrong-James, 1995; Simons, 1995). The whisker system has
the putative advantage over the visual systemthat greater control over the spatial
location ,of rec~ptors can be exercised. However, as:noted by Simons (1995), ".. ; In
its function the whisker field may be more 'similar to a continuous' receptive sheet,
like skin or retina, than' its' punctate anatomical structure Inight suggest." (268)
Also, in this modality as in our studies in vision notedabove,there is, a.good·deal
of evidence That the classiCal' receptivefieldpropeitie~ are altered by extra-field '
stimulation (Paradisio et '01., 1996; Vidyasagar and Henry, 1996).. '

2. Metllnodls,

Whiskers were stimulated by means of a set of rotatfIlg textur~d cylinders, each
grooved with equally spaced teeth, the tooth width and grooves'subtending equal .
angles. (The rd.tatingcylirider were meant tomimicth~ drifting of gratings' across'
the retinal receptors in vision.) The' cylinders were rotated counter-clockwise
against the right whisker alTay so that the whisker(s) were deflected posteriorly
and rebounded anteriorly. Tree cylinders (2cm.' In diameter an.d 5 cIll. IIllength) "
were used.,with grooves and teeth each measuring 30°, ISO, and 7.5° ,respectively
(corre;ponding to 12,24 and 48teethlcylinder). These textures were apprOximately'
the same as the co;u.serqfth9se used by Carvell and Silllops,(1990). The cylinders'
were rotated at8 different ~peed~, varyi~g from 22.5 deg/sec to 360 deg/sec.

Whiskers' were' identifiedaccordirig to accepted nomenclanire. In 32experi
inents' [iil25 rats] siriglewhi*ers were isolated and stimuhlted;additionally,in'23
9f these experiments agroup 'of four to six primary whiskers comprising portions of
one or two columns of the mystacial pad was in contactwith the rotating cylinders.
(This was done in order to bring the results of these somatosensory experiments
into register with those performed in the visual system where an entire array of
receptors is stimulated by drifting gratings.) , ,
, Electrodes were, Teflon coated stainless steel (Haer) ranging in impedence
between 1 and 3 megohms: The electrodes were implanted with the rat under
intraperitoneal barbiturate anesthesia (50 mg/kg) with 0.05 inl subcutaneous
atropine sulfate to suppress excess bronchial secretions. The rat was placed in a
stereotaxic headholder, and a small (5 em.) round opening,was made in the skull.
Amicroelectrode was lowered slowly through the opening at approximately 4 mm
posterior and 4-5 mm lateral to bregma by means of a hydraulic micromanipulator
untilgood unit responses were recorded, usuallyata depth of approximately 600
700 micra. Histological examination showed the electrode tracts t~ end in layer IV
ofthe somatosensory cortex.

Records of raw data were obtained by means of an FET cathode follower which
matched the impedence of the microelectrode to the input impedence of a Grass
Model P5. The recorded signal was band limited between 300 and 3000 Hz.,
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2.1. RELATION BET~EE~,SIN~LE'AND MULTI-UNIT ACTIVITY. .... .. . '.

3. ]ResuRts

3.1. THE FIELD/SPIKE DUAL

We obtained evidence that we are indeed mapping the varying magnitudes ,of the
fields of electrical activity which we assume to be occurring in the dendrites of the
neurons from whose axons we are recording spikes: Multi-unit bursts of spikes '(as
well as individual action potentials) were recorded with a high pass filter and simul
taneo.usly with a low pass filter (see also Verzeano et ai., J970). :This procedure
allowed us to compare the time course of the recordings provided we adjusted for

As.our anaiyses ~ere derived. from both ~ultj-unit bursts and from singleun~ts,we
sought to determine the relations}jjps between th~surfaCe distribution maps derived
from multi-unit bursts and those deriyed from single'units'composing the: bursts.
In ni'ne experiments, single 'whiskers, were isolated and stimulated. Whiskers were
identified according to accepted nomenclature as described by Simons (1978).'10
our analyses of four such records, we found that the surt!lce distribu~on constiucted
from multi-unit bursts encompassed those of the individual unlts composing the'
bursts: For instance, a burst-produced distribution surface appe~s to be composed
of surface distributions from the fotir single unit which compose tllat burst. The
four single-unit distributions show a gradual change in ,shape corresponding to
slight changes in location within the burst map. The figures describing these results
are available from the authors.
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and amplified .w~th a gain 20;000. One hundred seconds of continu'ousvoltages
sampled. at the rate of.32,000 sliIllples per secqnd were digitized and stored via
a BRAINWAvE (DataWave, Inc.) system onto aPC-486 computer. The raw data
were then transferred for processing in a Silicon·Graphicsworkstation. Approxi
mately 1/3 to 1/2 gigabytes·of data representing botq single spikes and bursts of
spikes were recorded at each corticatlocation. Our data include both si~gle ilnd
multi-unit activity -' that is, single spi~es and bursts ofspiI\es. When single spikes
were used, their origin from a single neuron was ascertained bya sorting procedure
using template'n\atching based upon spike amplitude and recovery slQpe. (We used
recovery slope rather 'than ascending slope because we found ascending slope. to ,
be highly positively correlated with amplitude.).More often we used multi~unit

bursts of spikes, especially, duriQ,g whisker stimulation since our recprds show a
great deal of Supefpositlonof spikes (defined in terms of a spikeansingdUring the
ascending or descending slopes of a,notherspike) during such bursts. Furthermore,
the number of mlilti-urllt bursts. ~increase dramatically during stimula~ion.: On' the
,average (during a 'IOO~econ& recard)the b~seUrie hasJ50isolated' single spikes:; ,
152 bursts, and 26 superPositions; the stimulation record: has 265~piices', 21~ bursts,
and 307 superpositions.' '



41. Simulation

In order to discern whether, indeed, our data fit ordinary signal processing
procedures, asimulation of the experimental method was executed.

3 Our baselines wer.e composites of 100 sec of pre- and 100 sec of post-stimulation recordings.
hI II separate study (Xie, M. et al:, 1994) using the same baseline data, we showed the spike trains to
111' lilochllstic (and, in longer runs, stationary), not deterministically chaotic.
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the relative delay producedby the low pass filter. In our recording apparatus this
delay amounts to 8-10 msec. Figures 1a and 1b show that the onset of the field
effect precedes or co-occurs with that of the initiation of spikes. Spike occurrence
becomes most likely just prior to the occurrence of the maximum amplitude of
the depol¢zing field and ceases as the. field decays (Figure 1b). Out of 2,369
field/spike recordings, 1,573 or 61 % showed this relationship; when recordings
made duririg sensory stimulation were separatelyconside.ied, the nitio went to
75%. The remaining cases were made up of 796 instances where thefieId effect
was recorded'\vithout any evidence of correlated spike activity.

3.2. THE CONAGURATION OF THE AMPLITUDES OF SURFACE DISTRIBUTIONS

Fifty-five maps were constructedofthe number of bursts or spikes per 100 seconds
of stimulation generated at each spectral location as determined ~y the spatial and
temporal parameters of an input.' According to our assumpticio()f .the field/spike
dual, the spike activity above or below baseline3 which resulted from whisker.
stimulation represents a s·urface· distribution of the amplitudes of local dendritic .
potentials. Spatial frequencies of the structure are scaled in terms of grooves
per revolution, while temporal frequencies are scaled in terms of revolutions per
second. Both are plotted on JIlormalized axes. Thus, the density of stimulation of
LWhisker(Oi set ofwhiskers) is a function of both the spacings of the cylinder ,
grooves and the speed with which the cylinder rotates (Figures 2a and. b, 3a and b
and 4a and b). These parameters co-determine the rate at which a whisker (or set of
whiskers).is flicked. If flick rate were critical, an equal flick rate ought to generate
an equal number of spikes or multi-unit bursts irrespective of whether the flicks
are produced by the spatial (texture) or the temporal (rotation speed) stimulus.
For instance, if flick rate were critical, a cylinder ~ith 24 grooves rotating at one
revolution per second should generate an equal number of spikes arid the same
surface distribution of local field potentials as a cylinder with 12 grooves rotating
at two revolutions per second. This expectation was not fulfilled, most likely due
to the fact that a change in rotation speed results .ina change in acceleration of
whisker deflection, which a change in the spacing of grooves does not. Thus, the
three-dimensional mapping of the surface distribution of the amplitudes of local
field potentials is asymmetrical with respect to the spatial and temporal axes of the
stimulus. Representatives of the 55 maps are shown in Figures, 2, 3, 4.
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Figure la-b. Figure la is an example of the relationship between spikes arta.ml!rtf:,~nit bursts
to coincident local field potentials. Figure Ib shows this relationship over J;?73 bursts. The
peak of the slow potential is marked zero. Note that the ascending slope of the field.pC?tentials
precedes that of the spikes and bursts. If the field potentials were a consequence of the burst,
the peak should coincide with or come later than the maximum number of bursts.
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Figure·2, 3, 4. Examples oflocal field surface distributions (2a, 3a, 4a) and t~eir associated
contour maps (2b, 3b, 4b) derived by cubic intetpolation (spline) procedure from recorded'
whisker stimulation. The contour map was abstracted from the surface d·istribution by plotting
contours in terms of equal numbers of bursts per recording interval (100 secs.). Each figure
shows baseline activity (no whisker stimulation) at a given electrode location as a plane located
in terms of number of bursts per 100 secs. The x axis represents temporal frequency (T.F.) in
revolutions per seconds (RPS). The y axis represents spatialfrequency(S.F.) in terms of the
number of flicks penevolution (FlickslR). Figures 2c, 3c and 4c are examples of simulated
surface distributions oflocal field potentials and their associated contour maps (2d, 3d, 4d)
to be compared with the empirically derived maps presented in Figures 2a & b, 3a & b, and
4a & b. Figures 2e and f, 3e and f, and 4e and f show the difference between the surface
distributions mapped' from the data and those mapped from the simulations. Note that the
coordinates ofthe difference maps range from 0 upward while those ofthe'surface distributions
mapped from data and simulations range from a much higher level upward.

4.1. FRAMING

The first stage of the simulation was to construct a putative map of the surface
distribution of fluctuating amplitudes of local field· potentials in patches of cortex.
In order to provide a pattern of peaks and valleys similar·tothat shown by our data,
we chose a rectangular window in the spatiotemporal domain to constrain a two
dimensional sinusoidal signal, because when the extent of the signal is pruned of
noise, a rectangular region is obtained in the results of experiments recorded from
visual cortical neurons (Gaska et at., 1994). In addition, the rectangular window
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allows for maximum resolution of frequencies (Zeevi and baugman, 1981). The
use of such awiitdow generates a sine function in the spectral domain.4

In our simuhitions, each plot shows the surface distribution of a spectral density
function of a rectangular windowed two-dimensional sinusoidal signal. When, in
other experiments, only a single frequency of stimulation is used, a spatial "connec
tion" .matrix can be constructed from recordings made with multiple electrode
arrays to represent the data (Barcala et aI., 1993; Chapin et ql., 1996; Nicolelis
et aI., 1996; Ahissar et aI., 1996; McLaughlin et al., 1996). In our version of such
a matrix, thesurfate distribution oithe amplitudes of local. field potentials" in a
patch of cortical tissue can be conceived to act as an "ideal" filter which processes
incoming signals. This ideal filter when activated generates a sine function which
is defined as:

sin(w)
sinc(w) =-

w
(1)

for all values.of the spectrum that activate the filter (KaIl1en, .1990).
As we used two parameters of stimulation, spatial and temporal frequency, the

sine function becomes twodimensional as follows:

(2)

for all values within the range of values specified for (1) above; and where WI

and W2 correspond to the representation of spatial and tempo,ral frequency in the
computational space.

In simulating our data, .the sinc function must, therefore, be defined fora range
of stimulus parameters within a computational space in which an incoming signal
is processed. Each signal generates "a sinc function within that spa~e, the peak of
which will be· located at some given temporal and spatial value~ :Therefore, the
actual sine function generated by each two~dimensional signal will b~ displaced
from the origin of the computational space· by the difference between the spec
tral frequencies which define the computational space and the actual frequencies
generated by the incoming signal. The sine function produced by the incoming
signal will thus be defined by:

(3)

where A is a scaling constant, WI and W2 are spatial and temporal frequencies of
the computational space, and WOI and W02 are the spatial and temporal frequencies.
of the signal.

4 We experimented with other types of window such as a Gaussian function and found little
difference in the results of simulation: the sinc function provided somewhat sharper boundades
between the various isopotential representations.
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Systematically changing the parameters of stimulation, therefore, serves to
systematically ,"move" the sinc function generated by the incoming signal within
the computational space in which the signal is processed.

4.2. SAMPLING

The second stage of the simulation adds another axis to the computational space by
taking. a limited sample of the sinc function using a Gaussian function. In·vision,
convergence of visual-nerve fibers onto the lateral geniculate nucleus has made it
possible to conceive of each geniculate cell as acting as a "peephole" sampling
a part of the retinal mosaic (Pribram, 1991, p. 74; Hashemiyoon and Chapin,
1996). In the somatosensory modality, a similar convergence onto the principl~

nucleus of the trigeminal nerve in the brain stem makes it possible to consider
the cells in the ascending trigeminal pathway' as sampling the mystacial mosaic.
The Gaussian represents such a sample, a peephole, and has the advantage that its
Fourier transform is also a Gaussian and thus can be readily applied to the spectral
domain. When this sample represents the output of a single neuron it is limited
by the spatial extent of the local field potentials fluctuating among that neuron's
dendrites. When a surface distribution is modeled from multi-unit bursts, the spatial
constraint is assumed to portray,t a greater reach. Sampling, which manifests as a
point process, is. performed by the generative activity of the axon hillock, which,
due to the upper and lower temporal limits of spike generation, functions as a
bandpass filter. This filter is multiplied with the sine function to yield a display
of the surface distribution.

Figures 2c and d, 3c and d and 4c and d depict distribution and contour maps
derived from these simulations. Note the close fit to the experimentally derived
surface distributions and contours shown in the difference manifolds of Figures
2e and f, 3e and f, and 4e and f. Statistical analyses are presented in Table I. As
noted, a total of 55 surface distributions were experimentally generated. Of those
three were essentially flat. Of the remaining 52, we simulated six; all but two of
the remaining 46 have a shape that can be seen to be successfully simulatible with
the technique described.

5. Discanssion

To summarize: We simultaneously recorded neuronal spike'activity and field
potentials from 25 rats, and the results showed the density of spike activity repre
sented the distribution of field potentials. Then, using simple spikes and bursts
of spikes, we mapped the distribution of receptive dendritic field potentials in the
somatosensory cortex generated by rotating grooved cylinders.

The surface distributions derived from our data are constructed of two ortho
gonal dimensions: one dimension reflects the spatial frequency of the stimulus
and the other its temporal frequency. Because spatial and temporal variables



visual cortex (Dauginan, 1990; Pollen and Taylor, 1974; Pribram and Carlton,
1986; Pollen and Gaska, 1997). This suggests that such a processing medium is
ubiquitous in cortical networks.' .

6. The CompBex lForm of Gabor lFunctions and the limportance of the Phase
Spectrum

A recent review by Tai Sing Lee (1996) continues and, expands the simulation
procedures .b~gun "in our experiments and specifies tbephase space sampling .
schemes needed-for image reconstruction. Lee Succinctly recapitulates and brings
up to date ,the evidence as presented originally by Gabor (1946) and reviewed with
respect to brain processes byPribtam (1991) (bold ours):

, .j."

On the theoretital side, [the] important insight ... advanced by Marcelja .
(1980) and Daugman (1980, 1985), [is] that ... cells in the 'visual cortex can
be modeled by Gabor functions [which can be used as a starting point for
developing' a theory of efficient reconstruction of an image]. 'The 2D Gabor
functions proposed by Daugman are local spatial bandpass filters that achieve
the theoretical limit for conjoint resolution of information in the 2D spatial
and 2D Fourierdomains.

qabor (1946)-showe~that there exists a "quantum principle" for informa
tion:the' conjoint time-frequency domain for 1D signals must necessarily be
quantized so that no signal or filter can occupy less than a certain minimal
area in it. This minimal area, which reflects the inevitable trade-off between
time resolution and frequency resolution, has a lower bound in their product,
analogous to Heisenberg's uncertainty principle 'in physics. He discovered
that Gaussian-modulated complex exponentials provide the besttrade-off. The
original Gabor elementary functions, in the form proposed by Gabor (1946),
are generated with a fixed Gaussian while the frequeqcy of the modulating
wave varies. These are equivalent to a family of "canonical" coherent states
generated by the Weyl-Heisenberggroup .... A signal can be encoded by its
projection onto these elementary functions. This decomposition is equivalent
to the Gaussian-windowed Fourier transform ...

Daugman (1980, 1985) generalized the Gabor function to the following
2D form to model the receptive fields of the orientation-selective simple
cell .... The 2D Gabor function isa product of an eUiptical Gaussian and
a complex plane wave. The careful mapping of the receptive _fields of the
visual cortical cells by Jones and Palmer (1987) confirmed the validity of
this model. Mathematically, the 2D Gabor fURlction achieves the resol
ution limit illl the conjoint space only in its complex form. Since a
complex-valued 2DGabor function contains in quadritureprojectionan even
symmetric cosine component and an odd-symmetric sine component, Pollen
and Ronner's (1981) finding that visual cells existin quadritute-phase pairs
therefore showed that the design of the cells might indeed be optimal. The
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. ~ .

. . . there are at least two advantages to such a redundant representation: first,
an image can be represented and easily reconstructed as ,a linear superposition
of the receptive field structures of the visual cells weighed by their firing
rates; second, high precision information can be computed and stored by a
population of low-precision neurons. (p. 12)

Lee then asks whether the surplus redundancy in representation could be due to
a limitation in a neuron's ability to transmit only three or four bits of information. In
fact, temporal coding carried in the spike train of a single neuron is more often 1/2 a
bit or less (Richmond and Opticon, 1987). Thus, the dendritic fields of visual cells,
modeled by Gabor wavelets, with surplus redundancy provide an ideal medium
for representing surface texture and surface boundary with high resolution. The
amount of redundancy provided by extreme oversamplirig in a tight frame may be
exaggerated in the Lee simulation. When more than a few stimulus components are
being sampled, this density ofsampling is necessary to providing fidelity.

Important for us is that, as noted by Lee, Gabor functions, unless they encode
complex representations offrequency, do not fully describe the potential of these

/ suiface distributions, the "ideal filter." Phase encoding is necessary for faithful
reproduction of the stimulus. Amplitude encoding, as provided by correlations
performed by non-holographic associative networks, provides only a gross approx-

fact that the visual cortical cell has evolved teran optimal design for infor
mation encoding has caused a considerable amount of excitement not only
in the neuroscience community but in the computer science community 'as
welL Gabor filters, rediscovered and generalized to 2D, are now being used

'extensively In various computer vision applications (Bovik et al., '1990; U~e
'etal.,1992).

Neurophysiological evidence (DeValois and DeValois, 1988) suggests that
the spatial· structure of the receptive fields of visual cells having'different sizes
isvi1t:ually invariant. Daugman (1993) and others (Bovik et ai., 1990) have
prQposedthat an ensemble of such cells is best. modeled as a family of 2D

.Gabor wavelets sampling the frequency domain in a log-polar manner;' This
class is equivalent toafamily ofaffine coherent states generated by the affine
group. The decomposition of an imagefinto these states is called the wavelet
transform of the image. .. . A particular Gabor elementary function can be
used as the mother wavelet to generate a whole family of Gabor wavelets.
(1-2) ,

By numerically computing the frame bounds for this family ofwavelets in different
phase space sampling' schemes, he finds that the phase space sampling density
provided by the visual cells in the primary visualtortex is sufficient to form an
'almost tight frame that aiIows stable reconstruction of the image by linear'supet
positfOif"oftheGabor wavelets. Running his simulations; Lee (l996) came up with
a surprising conclusion: "... two to three orientations are sufficient for complete
representation of the image" (p. 11). Further:
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imationto the stimulating surface (Caelli and Hubner,1983 as quoted in Pribram,
1991, Figure 2.5, p. 37; Oppenheim and Schafer, 1989)..

An excellent simulation using' Gabor functions' has been developed by Chris- .
toph .von def Malsburg and his group in' a dynamic link architecture (Lades et!
a[;; J993) .Their network, achieves image processing via computations similar to .
those described here: they use Gabor wavelets to compose a linear filter operation
in which an image is convolved with a family of wav~lets. This family is self
similar .under the application of the group of translations, rotations, and scaling.
This procedUre was also proposed by Pribram(Carlton; 198.8; Pribram and Carlton,

.1986; Pribram,':1991). to· deal with the perception of objects. However, Pribram
,.based·his proposal on a four-dimensional rather than.a two-dimensional dynamic..
Critical to.his proposal iSfi.lovement, which the van der Malsburg group point out
is the next step to be considered in their simulation.

Bell and Sejnowski (1996) confirm .the importance of phase encoding in
terms of the advantages of an independent component analysis (over a principal
component analysis) (underline ours):

Thefailure of correlation-based [processing] is most clearly shown by the
filters they produc~ when trained on stationary ensembles of signals. The
filter,S are typically ,global' ... , sensitive to different spatio- or temporal
freque~cies, but with bon-zero weights extending throughout the filter. They'
reflecr only.the amplitude spectrum ·of the signal and ignore the phase spec
trum where most of the suspicious local coincid~nces in. natural signals take
place. An edge in an image, for example, is a coincidence in the phase spec
trum, since if we were to Fourier analyse it, we 'would see many sine waves
of different frequencies, all aligned in phase where the edge occurred ....

To illustrate formally that second-order statistics only' carry information
about the amplitude spectrum, consider the autocorrelation function of a
signal, which contains all its second-order structure. The Fourier transform
of this is the power spectrUm, whicl) is fhe square of the amplitude spectrum.
Thus the two carry identical information.

To demonstrate intuitively that what we consider as the informative part
of a natural signal is, captured in the phase spectrum, ~ouriertransform the
signal, remove the phase information, and transfoQl1 it back to the space
or time domain. It will then look or sound like noise, typically with a. 11f '
amplitude spectrum. All the visual or auditory features that our perceptual
system thinks ,of as 'signal' will be lost. On the other hand,if we remove the
amplitude information, and preserve the phase, the signal will be distorted but
remain recognisable. (sic.)

This points to a curious paradox: correlation-based learning algorithms
are sensitive to exactly the part of natural signals which we regard as least
meaningful (amplitude); and ignore the part of the signal which we find most
meaningful (phase). To encode the phase of signals, we need an algorithm'
that is sensitive to higher-order statistics. (261-262)
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lridependent component analysis thus provides a readily accessible technique to
implement the findings of Caeili and Hubner and augments the argument made by
van Heerden (albeit in a learning rather than a recognition context) quoted in the
introduction. Independent 'Component Analysis, by being sensitive to higher order
statistics provides the procedure necessary for recording phase encoding in elec
trical recordings of brain activity- an essential requirement if cortical processing
is mathematically at all like that ofan optical holograw.

7. CondusiollD.

Research using extracellular microelectrode recording allows the mapping of dend
ritic surface distrIbutions :of field potentials. Such mapping has shown that Gabor'
wavelets provide a reasonable fit to surface distributions recorded from primary
visual cortex. In the current experiment, we have obtained evidence for a similar fit
between surface distributions of dendritiC field potentials and Gabor functions in
the primary somatosensory barrel cortex; This finding suggests that Gabor func-'
tions or some similar Hermite polynomials are good descriptors of the surface
distributions of dendritic field potentials in sensory cortex. These functions encode
complex representations of the sensory stimulus. Complex representations imply
that phase is an essential attribute to edge and texture representation. If this is

_ .so;lhenext step in research neel:is to demonstrate that transient phase locking to,
periodic stimulation occurs in such surface distributions in order that such details'
as edges can be extracted from scenes.
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8. implicatiollls for Future Research

The neurophysiological community has come to terms with the distributed nature
of what can be conceptualized as the "surface structure" of cortical processing
(Pribram, 1997). The accepted view is that distribution, entails ,the, necessity
of binding together the disparate sites of processing; Binding is accomplished
by temporal synchronization of spatially distinct oscillating neural processes.
However, as Steven Schiff (Fitzgerald, 1999) has pointed out: "All really interesting
things that go on in the brain happen in states of partial synchrony" (17). Such
partial synchronization is best represented by transient phase locking. To date, the
emphasis has been that under the conditions which produce binding, no phase lead
or lag is present·(see the interchange between Jay McClelland and Pribram, 1998,
pp. 551-'-556). More recently, usingEEG recordings, Varela (Lachaux, Rodriguez,
Martinerie and Varela, In Press) and his group have shown transient phase locking
to occur only at the moment a person perceives a recognizable figure. Taking
such experiments a step further, Bressler (1994) has traced the paths of phase
synchronization during performance of a visual discrimination task.

At the microelectrode level of recording (conceptualized as the deep structure
of cortical processing, Pribram, 1997), Saul and Humphrey (1990, 1992a, b) have
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found cells in the lateral geniculate nucleus that produce phase lead and phase lag
in the cortical processing initiated by them. IIi the somatosensory system, Simons
and his group (SiIhons, 1995), have analyzed the tiining of the thalamocortical
process to show how it enhances ':preferred" featUres and dampens "non-preferred"
ones - tharis, to show how it' sharpens sensory discririllnation. They have used
single pulse stimuli in· their experiments. As one of the postdoctoral students in
.their group pointed out, were' periodic'stimulation used,' their tiining coincidence
wOlild amourlt to phase iocking. Iii fact, most natural sensory stimulation is peri
odic ... otherwise rapid adaptation cancels out sensation. Currently, 'recordings
made with multiple rnicroelectrodes and data analysis with sufficiently powerful
computers makes it possible to ·more readily obtain additional data of this sort and
to determine the conditions und~r which phase - and not only amplitude - encoding
occurs. These are. definitive steps in bringing the neural network (PDP) simulations
to include spectral processing, steps that help realize the promise articulated by Van
Heerden (quoted inthe introduction) in understanding the functions of the brain in
perception and memory.proyided by the holographic process..
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