Visual Receptive Fields Sensitive to Absolute and Relative Motion during Tracking

Bruce Bridgeman

Visual Receptive Fields Sensitive to Absolute and

Relative Motion during Tracking

Abstract

Some neurons in the visual cortex of awake monkeys visually tracking a moving target showed receptive fields that were excited only by stimulus motion relarive to a background, while other neurons responded to any kind of stimulus morion. This result was found with two methods, one in which tracking eye movements were identical in both relative-motion and absolute-motion condirions, and another in which stimulus motions on the retina were identical in both conditions. This response patfern can diflerentiate translation of the retinal image during eye movement from motion of objects in the world.

Image motion across the retina does not necessarily provide information about object motion in the world; information about object motion is generated only when one pattern in the optic array moves with respect to another. To detect motion of objects in the world, some cells in the visual system must respond to motion relative to a background (which indicates object motion) rather than to displacement of
the entire visual image across the retina (which indicates cye movement). The two conditions were separated by exploring the visual receptive fields (RF's) of single cells in the monkey's visual cortex (1,2) while the monkey tracked a slowly moving target. In one condition a stimulus was fixed to a screen so that its image scanned the retina during the monkey's slow eye movement; the stimulus moved with respect to the retina but not with respect to the background. In the other condition the stimulus moved with respect to both

Fig. 1. Two cells with receptive fields responsive only to motion relative to a background. Each row shows a separate map made under visual tracking, and each pair of axes represents the 25° by 25* region of the stimulas screen over which the fixation target could be moved. A map consists of vertical scans separated by 0.5°. beginning at the left. Each scean is divided into 50 segments, each $0.5^{*}(50 \mathrm{msec})$ long., and a spot is darkened in the display if the cell fired while the fixation target (a 1^{*} disk) crossed the corresponding region of visual space. At levels 2 and 3 a spot is darkened only if the cell fired at least two or three times, respectively. The bar stimuli and their toeations in relation to the scanned area are shown in the left column, with the stimnti moving through m^{*} by 4^{*} aperture in the directions indicated by the arrows attached to them. Moving bars are depieted in the centers of their apertures. About half of the 25° by 25° stimulus space was mapped in each condition. Receptive fields are apparent when the stimuli are moving but not when they are fixed on the screen. The two cells are from opposite hemispheres of the same monkey. Cell A shows one of the strongest fields found, and cell B one of the weakest. Control maps, with the fixation target moving upward but not tracked, showed only background activity (not illustrated).
the retina and the background during identical slow eye movements.

Three immature rhesus monkeys were trained to sit in a primate chair and optically track a 1° target moving on a tangent screen. Eye movements were monitored with standard clinical electrooculogram electrodes fixed above and below the orbits, while the eyes were observed with a system based on the Mackworth eye camera (3), Because tracking accuracy improves with practice (4), each monkey was overtrained for at least 2000 trials before RF exploration began.

For RF determination a 25° by 25° region of the screen was divided conceptually into 2500 blocks, each 0.5° by $0.5^{\circ} \mathrm{in}$ extent. The fixation target passed through each block in succession, and a point was produced in the display when an action potential occurred. The displays of Fig. 1 are therefore maps of cell firing for corresponding positions of the fixation target on the screen. The target jumped to the edge of the scanned area, moved up and down (or right and left) at $10^{\circ} \cdot \mathrm{sec}^{-1}$, and jumped back to a hidden origin point. If the monkey followed the downward movement of the target without saccadic eye movements, he-was, rewarded with apple juice. At any time the experimenter could initiate a new trial 0.5° to the right of the previous one; unsuccessful trials were repeated.

Each RF map was made with two stimuli on the screen, a fixation target and a mapping stimulus. To provide a mapping stimulus that moved relative to the screen, a horizontal bar 0.5° high was moved vertically through a fixed aperture 2° high and 4° wide. As the bar disappeared from one edge of the aperture it was replaced by another on the opposite edge, resulting in a moving display, with a contant speed and direction. Light flux at the monkey's eye varied less than I percent as one bar replaced another. The aperture was always mounted contralateral to the hemisphere in which the cells investigated were located. With this apparatus, responses were mapped under three conditions of stimulus motion; the bars moved down the screen at $5^{6} \mathrm{sec}^{-1}$, remained fixed, or moved up at 5° sec $^{-1}$. When the monkey's eye
scanned down the screen during tracking. the upward velocity of the bars across the retina was increased by $10^{\circ} \mathrm{sec}^{-1}$, resulting in retinal stimulus speeds of $5^{\circ}, 10^{\circ}$, and $15^{\circ} \mathrm{sec}^{-1}$, respectively. Thus, absolute motion across the retina was present in all three conditions; but at the second, intermediate. speed there was no stimulus motion relative to the background. The hypothesis that relative motion is necessary for RF excitation predicts that some neurons will respond only under the first and third conditions, while a pure retinal-motion hypothesis predicts responses under all three conditions.

Brightness of the fixation target and the mapping stimulus was $60 \mathrm{lu} / \mathrm{m}^{2}$ on a screen of $4 \mathrm{lu} / \mathrm{m}^{2}$, yielding 1.2 log units of contrast. The screen was a finely textured black poster board 57 cm from the monkey's eyes (2).

A simple system was developed to record from single cells in awake monkeys (5). A tungsten microclectrode was advanced slowly into the lateral striate cortex (area 17), 5° to 10° from the foveal projection. When an action potential of a cell was isolated, the RF was first explored with large hand-held stimuli and was then mapped with the tracking method.

In the first experiment, data were obtained from 34 neurons. Of the 18 that were investigated under both rela-tive-motion and absolute-motion conditions, 39 percent responded only to relative motion (Fig. 1), another 39 percent responded to both absolute and relative motion (Fig. 2), and the remaining 22 percent were unresponsive to any of the stimuli used. The lack of response when the mapping bar was fixed on the background (Fig. 1) was not caused by a threshold of stimulus speed across the retina, because retinal motions both faster and slower than the $10^{\circ} \mathrm{sec}^{-1}$ of the fixed-stimulus condition elicited clear RF's. [Wurtz (6), using a similar recording procedure, found no qualitative difference in response to absolute movements varying from 10° to $40^{\circ} \mathrm{sec}^{-1}$ during steady fixation.] Responses were not caused by abrupt appearance or disappearance of a stimulus, because this occurred only once every 0.4 sccond and was not synchronized with scanning. Responses to unsynchronized events would not appear consistently at the same height in the maps.

These results were tested statistically against a null hypothesis of identical responses to the moving bars and to the fixed bar. A chi-square test was significant ($P<.001$), showing that the

Fig. 2. 1 cell that responds to any movement of a bar stimulus across the retina. Mapping was done as in Fig. 1. The fourth map from the top (made with a fixed disk 1^{10} in diameter) shows that some of the cells mapped in this experiment had small disk-shaped receptive fields; the bar-shaped response areas result from convolution of the mapping stimules with the receptive field. The bottom map, a control with a fixation target but no other stimulus, shows no receptive field.
results were not due to some uncontrolled factor,

To test the relative-motion hypothesis further, another experiment was performed in which maps made with a fixed stimulus and slow tracking were compared with maps made during anesthesia with the eyes nearly immobilc. In the latter condition, the moving spot, instead of being a fixation target, scanned the retina itself. Thus, relative motion was present. but the speed and direction of image motion on the retima was equal to that of the fixed stimulus during tracking. A cell was lirst examined under the tracking condition, with a peripheral stimulus (a 1° disk) fixed on the screen. The animal was then anesthetized with ketamine bydrochloride, the cell was remapped, and the optic disks were projected onto the screen with an ophthalmoscope to determine retinal position. Some cells showed responses only under anesthesia, when relative motion was present, even when the same mapping stimulus (a 1° disk) scanned the retina in both conditions.

Cells that could not be excited by any stimuli were found in the present experiments with about the same frequency as in a previous study with similar mapping methods (2); possible reasons for the inexcitability of these cells was discussed in that report. Inaccuracy of tracking eye movements did not obscure responses, because the presence of small RF's (Fig. 2) showed that the resolution of the mapping technique rather than tracking error was the limiting factor. Inactive cells may have had highly specific trigger properties (6,7); thus, the results may represent a biased sample of motion sensitivities.

The contrast between these results and those of Wurtz (6) underscores the differences between slow and rapid eye movements. Wurtz found no differences between responses to stimuli moving at $900^{\circ} \mathrm{sec}^{-1}$ during steady fixation and responses to fixed stimuli during rapid eye movements. The Wurtz experiment, designed to search for a corollary discharge at the cortical level, is complicated (in a perceptual context) by retinal blur and saccadic suppression. More than two-thirds of the neurons in Wurtz's sample dramatically changed their responses with a transition from slow to rapid stimulus movement, a result suggesting fundamental changes in response properties.

Cells responding preferentially to relative motion have been found before, both in insect visual systems (8) and in direction-selective cells of the superior colliculus (9). In the latter system, response to movement in the RF center is reduced when a second stimulus in the inhibitory surround moves along with the first; and directional selectivity is lost with the removal of cortical input. Further work is required to define the relations between the cortical and collicular cells.

The presence of two types of cells in about equal numbers, one responding to any stimulus motion and the other only to motion relative to a background, means that information is available at the cortical level for a comparison mechanism that distinguishes eye movement from object movenent. Both types of cells are activated by object movement, whereas only the absolutemotion cells respond to eye movement. This response pattern is consistent with Gibson's theory (10) that the visual world is stabilized by defining the optic array as a stable world, leaving motion to be perceived as a result of motion of one part of the array with respect to another.

Gibson (10, //) pointed out that the features to which physiologists have found responses in mammatian visual systems-such as disks, lines, and edges moving on homogencous screens-are highly ambiguous for perception. An edge in the optic array can specify the edge of an object in the environment, but it can also signal a shadow, a change in contour, or many other things. Useful structure in the ambient optic array comes not from differences in brightness, but from stabilities in optical patterns over time and the lawful transformations of these patterns.

BRUCE BMDDOEMAN*
Department of Psychology.
Stan/ord University.
Stanford, California 94305

References and Notes

1. D, N, Spineth Esp, Nearal, 19, 291 (1967) 2. N, K. Pribram, B. Bridgeman, /ur. \boldsymbol{j} Nemporel. 1, 67 (1970).
2. N. Mackwarth, Percept. Psychoplyz. 3, 12 (1968).
3. A. F. Fachs, 1. Physiol. Lawaln 191, 609 (1)657). During the training period in this experiment a gradual increase in tracking secturacy was also shtitved.
4. is. Bridgeman, ELerromerphalogr, CWm Neurophyniol. 33, 116 (1972); D. N. Spieelli, B. Bridgeman, S. Owens, Med Bdol. Eng. B, 599 (1970).
5. R. Wurtz, J. Newroplysiol 32, 987 (1989).
6. D. H. Hubel and T. Wiesel, 1. Phyatoi. Liondon 195, 215 (1968).
7. G. Horn and C, Rowril, j. Exp, Hioh, 49, 143 (1906): D. Palkz, © (bif. 59, 723 (1969).
8. P. Sterling and B. Wickelgren, J. Neurdphysiol. 32, I (t969); B. Wickelgren and P. Sorring. thinf., F 16.
9. J. J. Gibson, The Senses Consilereal ar Fercepmial Symetms (Hoaghton Millin, Bowinn, 19661, p. 256. Gibson'z theory eannot, how ever, acooant for the olaservations that made ever, acooant for the olastvations that made
nocessasy the coroliary discharge theory |E von Holst, Brif. J. Anfow. Bohav, 2, 89 (1954)] The visual world may be siabalized by several mechanisms, each checking the others.
10. 11. J Gitwian, Frychal Rev, 64, 285 (1957)
1. A mose complete repoot of thene experiments is in perparation. I thank K. H. Pribram, D, N. Spinelil, and R. W. Phelps for advice and assisianse. Supported by NHH grant MH 12970 to K. H. Pribram.

- Present Adeess: Physinlogiaches Inatitet, Fetic Universitlis Berlin, I Beriin 33, AmimalIte 22, West Otrmany
4 Avguer 1972

TECHNICALCONTRIBUTION

A SIMPLE SYSTEM FOR EXTRACELLULAR MICRO-ELECTRODE RECORDING FROM AWAKE ANIMALS

B. Brimahaman

(Acceptod for poblication: Jasuary 24, 1972)

The increasing importance of eaperiments investigating single cells in conscines amimals calls for a micro-electrode sysacm for scm-restruised animals which permits peecise ciccirode movemens yes is inexpensive, reliable and easy to epetate. The hydraulic-drive method of Evarts \$1966). though procise, is somewhat cumbersome and expensive, requiring three 隹d chambers and many specially machined puris timmprey's (1970 system, while using a direct drive, similarly requires doxens of smail paris, and iss sercwdrivereonareiled electrodes might prove clumsy to operate among recording wires, foeders, etc. The system of Thomas n ol. (1968) is simpler than the others but shares with them the disadvantages that the electrodes cannot be seen when in place. it dees not allow cloctrodes to be withdrawn under stercolaxic control, and requires i large and heavy implanted head plue on the animal.

To avoid thesc difficulties a new micro-electrode moonting system was developed. The heart of the system is a microdrive tnade from a disposable hospital syringe. A microelectrode is raised and lowered by the syringe's original piston, driven by a standard machane serew threaded in the end of tbe syringe. During recording the micro-drive is fixed on a cylinder which has been implamed over the desired brain urca (Fig. 1).

The micro-drive conneets with a removable plug of denial acryle, which piugs into the animal's permanent implant and contains connectors for ground and indifferent leads as well as the field-eflest transistor (FET) of a source-follower head stage. Wifes go to the amplifiers from this plag rather than directly from the micro-manipulator so that the plug rather than the electrode-holding apparatus absorbs mechanieal stresses. Lacation of the FET in the plag makes arti-Gucr-frec recoeding casoer and minimizes movement artifact : the high-impedance icads are kepe shori, and when the animal moves the high-impedance part of the circuit moves with him as a unid.

The pish of the micro-manipulator screw thread deler-

[^0]

Fig. 1. The recording apparatus in cross-section. The microelectrode is advanced and retracted by turning a dise (|el|) at the top of the micre-drive. Recording wires lead from s removabie plug (right). Inset: Top view of monkey before a recording session. During recording, the head is restrained with four bars which fit inte sockets in the implanted plue With this syssem the animal can move a few millimeters in the forward-hackward and up-down diroctions, making it easier for ham to receive reinforcement, and the plog has no protrusions which might become caught in cage bars. Moekeys adjust 10 this head resaraist more easily than they do to restraint in a primate chair..
mines the sensitivity with which the miero-tiectrode oas be adraneced, and is a compromise between fine manipalation at the recording site and quick descent to the site. Standard 40 turn/inch (16 turn/ cm) threads advance the ciectrod: $633 \mu / 4 u r n$, allowing easy descent to the recording area while still permitting fine movements oi $10-20 \mu\left(6-12^{\circ}\right\}$

The electrode is at the end of the

The miero-d parts. The body syrinue is cul to small holes ure , pressure relief f thread machine inside, threading it is heated by a threads. The rut if fine wire ($28-\mathrm{g}$: piercing it along and threading il removed, leavin! acroas the end of opposive side, at where it emerges length of thin tut dot" "pin-strip" the pistion to hold goes through the gold-plated wire neck of the syring The piston is the over the screw h eitber direction light contact. Th smuli plasic disc

The micro-dr dermic needle exi part of the head pi and indifferent) ke "pin-strip" conn strength and elec ent leads go thre to the amplifiers. hads from the s 2 N 3796) whose । jack. The elestroi et ol (1970), and except that after ti to a bout 100μ in . etching until bubt tip (Hubel 1957). the Hubel electro method, minimiz: tapers too steeply cell bodies and is step is self-termint

Alier insalatin marked at A lengul 4 mm below that drive, and fixed in the electrode. An ε tration anywbere the socket laterall. place. Afier moun length of the imple: marked on the mia made from this mis

Neurophysiology The Netherlands

RODE

section. The micreraing a disc (leff) at wires lead from a of monkey before a : head is restrained the implanted plug. t few millimeters in rections, making it and the plug has no in cage bars. Monsily than they do to
ro-elecirode can be 1 line manipulation of the site. Standard ance the electrode the recording urea of $10-20$ p $\left(6-12^{\circ}\right)$.

MICRO-ELECTRODE SYSTEM

The siectrode is advanced by turning a small disc mounted at the end of the drive sertw.

The micro-drive is easily mannafictured from inespensive parts. The body of a 3 ml "Tomac" polyethylene hospital syringe is cut to 33 mm and its tip io 2 mm in length, and small holes are drilled in the top and near the bottom as air pressure reliel ports (Fig. 1, lefi). A 1.5 inch (3.8 cm) $4-40$ thread machine screw is inserted in the syringe tip from the inside, threading itsell. When it protrudes from the syringe it is heated by a soldering iroo and turned further to form thresds. The rubber piston is removed from its plunger and a fine wift (28-gauge tinned copper) is passed through it by piercing it aloeg one side with a 23 -pauge hypodermic ntedle and threading the wire through the netdle, which is then removed; leaving the wire secured in place. The wire loops across the end of the piston and is threaded back through its opposite side, about 1 mm being bent paralitel to the side wbere it emerges to prevent it from pulling out. A $2-3$ mit length of thin tubing fthe femake segment of in single "Mierodot" "pin-strip" connector) is soldered to the wire beneath the piston to hold the electrode. The other end of the fine wire goes through the upper air relief port and is soldered to a gold-plated wire which has been twisted tightly around the neck of the syringe with I cm extending as a connecting pin. The piston is then inserted into the micro-drive and foreed over the screw head so that in can move the elecsrode in either direction. The coanector is bem slightly to ussure a tight contact. The micro-drive is completed by fustening a small plastic dise on the end of the drive serew.

The micro-drive plugs into a length of 23 -gauge hypodermic needle extending on a shori wire from the removable part of the head plug (Fig L, right). Though enly iwo (ground and indifferent) leads are needed in the plug, a length of eight "pin-strip" connectors is used for greater inechanical strength and electrical reliability. The ground and indifferent Jeads go. through shielded Microdol cable (202-3812) 10 the amplifiers. An ideatical purallei cable carries shielded leads from the sourve und drain of the FET (Motorolu 2N3796) whose gate connects to the micro-manipulator jack. The electroaic system as identical to that of Spinelli af ab. (1970), and micro-electrode manufuctaring is similar except that affer the tip of the ivngeven shaf has been eiched to about 100 g in diameter it is sharpened by immersing and elching until bubbling stops. laving a more stexply lapered tip (Hubel 1957). This elvelrode combincs the toughness of the Hubel electrode with the tarruw shat of the Spineili method, minimixing tissue disturbanse. Though the tip tapers too steeply to record fibers well it records well from cell bodies and is easy to prodoce bovases the final stchin! step is self-lerminating

Afor insulating and testing. thotrodes of 24 M62 anc marked'ut a length af 24 num and siripped of insulation for 4 mm below that peint. They are cul, inserted in a micridrive. and fixed in place by lightly crimping the socket aboul the elocirode. An eleztrode tan be adjusaded to make a penctration unywhere within the implanted cylinder by muvin!
 placs. After thoumaing. the eleciroule tip is estemdeal to the Iength of the implanted cylioder and the lonation of the pustan! markal on the micru-drive wall. Depah talibrations san he made from this mark. Frictans hetwess the pistent and the

Fig. 2. Details of the mount for the miero-drive. Because of their small size, several cylinders can be insplanted simulianeously. The cylisder's tapering sides are roughened to assure it tight fit for the inicro-drive.
syringe wall prevents the pistion from rotating as it is raised and lowered. To prevent rotation, a drop of light silicon oil can be upplied inside the piston to luvricate its junction with the drive screw.

The micro-drive fits onto an implanted plexiglas cylinder. the only part of the system (except for the micro-electrodes themstlves) requiring special machining (Fig. 2) Plexighs tube is threaded witb standard 025 inch (6 mom) threads on the inside, thea tathe-turned to make a group of cylinders which can be sawal apart. The micro-drive is fised on the cylinder for recording by its own elasticity. gripping the rowphend, tapering sides. The cylinder's taper abd its top diameter are the only eritical dimensions in the system.

The cylander and prouncling elestrodes ane implanted surgically under useptic conditions. Usoler ubssthesia the skull is exposed and all menshranes scruped away until the surface is dry. To anchor the implent three sumall stainless steel screws are fised to the skull hy thaking keglonk-shapsed openings in the skutl, insering slie ficat of a screw in the large part of an opening and muvine the serew until its shaft protrudes from the nafruw sles with the serewlesed Girmly
 stronger reinfordement than dotes simpk relinnce ses serew threade in the xkull Giround anol indifferent ckectrodes, suldered to a Micrudat consector in advance, are fixed to the implant with the grownd lead letween the skull and scalp on one side and the indifferem lead in an clige of the hole nade for umplembation of the pleseqias cylinaler. The derat miker this hoke is coll away sis that eloctrides can pemetrate mithout danaging cither them or the hrite tissuc. Lisperi-

 cylimer, ploy anal liczal rextramis (fiy. I) ane fibed in place
 sylater, ugar is prured inter it atel alhowid to larslen, pre-

 strew cut to then turn in fenghi. A uvih sat ie the thrisals on

glace: the verrwlesel fiorms aim airlipit wail wath the top of the cylumker nlant fristy wownel. A Mixenket sonnecter cyis the thetrosk piup

The uwar, which pretess the hraia and stahelines the micru-cilettink. is replecol ceery fer days to assure clean comditune ant stal/h mectuntical peopertice Sicrile forecpe 20 insected in the seles of the atear in the cylimeter until they marly wach the hotion af the well, them are fotates gently to beimp: the whl atar tue as a blish. Secfile agatar al $47^{\circ} C^{\prime}$ is strawn entet a -Tantac ${ }^{-} 3 \mathrm{ml}$ syrange, the satte type as aned Kor mabite: sicri-drives whow tip is slightly shorter than the colinsker. The tip is itacned it the cylinder and an exvess ofazar skowly extrudeal to rinse the wall. When the flow steps the syringe is withtrawn, kaving the agar at the proper beigh in the well sir capping. The procodure can be fuerformasl in woutcostus animals without discivmfort.

Nher scovral months of daily use a micro-drive becomes worn, hut it is m incerpensive thatt it can be descarded and Nplatad by anoviher Several micro-drives are fitted with shotrondes beforc cach reonrding stosion so that a damaged stecarode can be apaickly peplaven Scveral cylinders can he amplamied socvessivcly of simulansevasiy for maximum experiamental fersihelity.

Wath these tectnnizues single oelis have been held foe more than an hotut. and dowesw of ceils can be recorded over several months without use of drugs.

SUMMARY

Att extrucellular micro-electrode recordiny system is descrahed for esse in manesthetired cats or monkeys. The sysicin is simpler thaz previnus ontes, an he haits from readely availabic componcosts without spocialized tools or any machining of metal, and is 50 incopensive that the microdrive itachl' is disposable.

The heat of the system is a macro-drive made from a 3 ml disposahle hospotal syringe, a standard machine screw und a lengih of fine wire. For recording is plugs onto an agarFilled plesiglas cylinder which is implanted in the experimental animal along with grounsl and insdifferensi eiectrodes and head restraints. Recording wires lad not directly from the miero-drive hut from a removahie pleg which contairs sockets for ground and indilferent kads as well as a fieldeflect iransistor head suget for conversion from high to low impedance. The hieh-impedance leads are kept short, minsmizing electrical noise. Ground, indilferent and Iransistor leads zo together Irom this plug to the amplifiers

For maximum experimental llexibility several mierodrive mounsing cylinders can be insplanted successively or simultancously. The system has been tested in cats and rhesus monkeys, where single cells can be heid lor over an hour and several doeen cells can be recorded over several months from 3 single animal

RESUMI

UN SYSTEME SIMPLE D'ENREGISTREMENTS PAR MICRO-FLLECTRODE EXTRA-CELLULAIRE CHEZ L'ANIMAL EVFILLE

Lasteur dèerit un systême d'enregistrement par macro-
 non-anesthesit. Ce systome, plus simple que les procidenes, pout àre fabrigut à partir d'ekements disponibles dans tout baboratoirc, sans outils spóciaun ni bsinage mécanique. It est si bon marché que méme k microdescendeur est accessable.

Lu base de sysueme esi constituee par une sering̨ue d'hòpital de 3 oc, une simple machine à fileter et un morceau de cäble fin. Pour T'enregistremenu/ eetie pitest en fixée à un cylindre de plexigiass remph d'agar. implante dans Ianimal on meme temps que l'electrode de terre, les eleczrodes indifférentes et les pièces de contention de la thte. Les fils d'enregisirement me descendem pas directement du microdescendeur mais sont reites à un connecteur amovibit avee sontacts pour la verre. les electrodes indifferrentes en un elage déentréc a transistor à effet de champ qui opere Iu comversion de haute ì basse impëdance. Les connecions à hause impedance sont ainsi tres courtes ce qui réduit ie bruit de fond. Les fils de terre, des èlectrodes indifferreestes et du transistor sortent ensemble de of connecteur vers les amplificateurs.

Pour permentre une grande souplesse expérimentaic. plusieurs supports de microdescendeurs peuvent Etre implantes successivement ou simulantment. Ce systime a ett éprouvé sur des chats et des singes rhésus chez qui des unites ont pu étre conservetes pendant plus d'une heure et plusieurs douzaines de cellules peuvent ètre enregistries pendant plusicurs mois chez le méme animal.

The author thanks D. N. Spinelii and R. Wiliams for advice and assistance.

REFERENCES

Evarts, E. Methods for fecording activity of individual neurons in moving animals. in R. Resmmen \{Ed.) Mehods in medical rescorch. II. Year Book, Chicago, 1966.

Hunel, D. H. Tengssen microciectrode for recording from single units. Scienn', 1957, /25: 549-550.
Humpraker, D. A chronically implantabie multipie microciectrode system with indegendent coatrol of electrode positions. Eleceromerph. clin. Newrophysiol., 1970, 29 : 616-620.
Spinelli, D. N. Briogeman, B. and Owens. S. A simpie single-unit microelectrode recording system. Med biol Engng., 1970, 8: 599-602.
Thomas, J. Groves, P, and Verzzand, M. The activity of newrons in the lateral geniculate body during wakefuiness and natural sleep. Experientia (Basel), 1968, 24:360362.

WURTX, R. Visual reseptive fields of striate corter neuroms in awake monkeys. J. Neurqphyriol., 1969, 32: 727-762

Reference: Brib(anuan, \& A simple sysiem for extracellular micro-eiectrode recording from awake animals. Eiectroenceph. rlin. Neuraphroinl., 1972, 31: 116-118.

SOCIE

JOINT MI LA SOCIE NEUROPI and NEDERL/f EN KLIN1

Amsterdam, Muy
Secretaries: A
8. square Thiers, Keizer Karelong !

1. Tele-electroen

 M. EnjelvinThe authors atter (T.EEG) in relatic report 136 T.EE performed on epi study the time dis tomatology of mi T.EEG and clinic: TEEO investigati
2. EEG recordiaj electrodes impl C. F. M. Schri The Netherlans
In psychialric ans has been carried chronic indwelling various brain str between varines el aspects. For exam activity simultane cisec activity. This with similar phent occurrence of bur relation to ceriain । decision making.
3. Essential parex - 2. Cadilhas pellier, France)
Forty-two 12 h te

[^0]: I Supporied by Netional Inssitutes of Heaith Grant Mit 12970 to De. K. H. Pribram. Present adders: Physioiogisches Institut. Freie Universitait Berlin, Arnimallee 22, | Herlin 33. W. Germany.

