Structural information theory

T. W. Barrett
Department of Physiology and Biophysics. University of Tennesser Medical Units, Memphis

(Recrived 11 April 1971)

Abstract

A method of defining structural information in Hilbert space is deseribed. Instead of commencing an inser theory amalysis with a simple signal and progressing, to an n-dimensionan information , pace, wa procedure can be followed: the signal is defined completely in both real and imaginary space, ond represented as a dimensioniess number in Hilbert space. Thus, a signal can be asalyzed into a Hilitar mensure of information. This mesure has similarities to the relativity of states of Everetr's (1957) rifong of quantum mechanics involving observet-observed intersation. Whereass Everett's theory deala the totality of all possibie ways in which a state function can be decomposed into the sum of proderto e? functions for subsystems of the overall system, the theory presented here deals with the totality of poxith in which a Hibbets space measure of signal state can be decomposed by signal definitien into recippocilly i x . messures of the sate for subsystemss of the overall system. In the overall system presented here, a signd bi a concise representation either as a quadratic form on a Hilbert space, or as a Fourier coefficiests in kenes function space. The total information content of a signal qualified as a dimensionless number in Hilibar may be gives a representation in familiar units by the use of such methods. A primary postulate of ocm ind of the state function of the system. Thus, a signal is defined firsuly as an information secondly in the familiar units of frequescy, bandvidth, midperiod, and duration.

Subject Classification: 15.2
where Δf is the "effective" signal bandwidth and $\Delta /$ is the "effective" signal duration. Such a unit can define certain aspects of the oscillatory response of any system of one mechanical or structural degree of freedom, with a second degree of freedom given by the duration of its response considered as a signal. One illustration is that a reed responding to an electrical signal has one mechanical degree of freedom with a response defined by solutions of the homogenous equation (Cortiss, 1963) :

$$
\begin{equation*}
M \tilde{x}+D \dot{z}+k x=0, \tag{2}
\end{equation*}
$$

where M is inertia, D dissipation, k the coefficient of restitution, and x the mechanical coordinate with one degree of freedom.
More complex systems present problems in relating the elementary signal to the structural system considered, as more structural degrees of freedom are involved. For example, the central nervous system (CNS), viewed as an information conveying system, has more than one degree of freedom. The sensory receptor of the auditory system behaves with continuously varying coefficients (equivalent to M, D, and k in Eq. 2), and has at least four degrees of freedom
(Rink, 1970). Presently, there is an aboatstroc able mathematical treatment of the bativito fluid or endolymph within the cochlear ons in tio Bekésy, 1965). This paper will treat only fycce of freedom case, but another communiong 20 1972b) points out some interesting hiniplopsty
 specific mathematics required to underits (Ex) mechanics will not be provided here, Gris en theory with which such a system musterndo

Before commencing a complete sighaf zos yo information theory terms, it is first now 0 O phasize that the information theory ado edila concerned with information structure ander Shannon theory, which is a related but zos (Barrett, 1972d). Secondly, the definiñ terms of bandwidth, duration, midthoving
 and not two (Barrett, 1972c). The ravict statement are as follows.
The definition of an information measuy) only two parameters-signal bandwidth ${ }^{\text {en }}$ casts doubt on the elegance of the usurfers signal by circular functions in the timet instance, if a signal is defined by a together with statements conceraing and bandwidth-one is confined by which is adequate enough for most pur methods for signal redefinitioa Other writers (cl. Gabor, 1946) have the Fourier methods require infinite logon definition bas sbortcomings,

形g relation，but does not reference in one Fintion：（a）the center frequency of the anced in cycles／second or hertz）；（b）the FThe signal（measured in seconds／cycle），or Sthe variance of energy dispersion in the comain is equivalent or different from that Comin．Thus，neither circular functions nor 4herser a complete definition of the signal． 110 finctions does not define the concept of a 1 －Merely expresses the values of a signal in Whalis For signal definition，a set of functions Whatin，but coefficients are necessary in vector 45051
Tm Noment against the conventional use of \rightarrow frimetions is that Fourier＇s theorem treats time （tra（Cabor，1946，1947a，1947b，1953）．The use dandifutctions appears based on，for our purposes， 0nigmatism．Their usefulness lies in the mald a defining a signal in circular function form miva Treterent to the frequency domain；i．e．， 1．eher time it presupposed，a circular function has an and deritan in the frequency domain．It is common whefthisgnal redefinition may be accomplished yudtritiansorm．However，the presupposition Whate time is questionable and circular functions － 7 Th Oi to restrictive a language for structural H－Cutheory．
$1 /$ rivitive to consider the nature of integral － Wha poomitial kernel may be defined as the varat 1 bermportant functional equation（Cauchy，

$$
\begin{equation*}
F\left(\hat{1}_{1}+\epsilon_{2}\right)=F\left(\epsilon_{1}\right) F\left(\epsilon_{2}\right), \tag{3}
\end{equation*}
$$

ved 16 dudion to this equation and 6 is complex $0-1$ pocitive real part．As a kernel of an sic erponential provides a means for rede－ 15 In in any domain defined by the exponent whacior and the integral operation．This is ［ ${ }^{2}$ ation to Eq．integral operation．This is Wfunction that defines the addition of a Wrand fe function that defines the addition of a ed by at purpeo

Fic. 1 . The elementary signal defined by the conditions$\Delta f \cdot \Delta t=i$ and $f_{0} \cdot t_{0}=f-D_{3}(x)$ in the notation of this Ggure-is the first in a series of modulations and may also modulate different functioes. Here are shown eiementary signals with amplitude modulations $D_{2}(x)$ and $D_{1}(x)$. In the first of each three the modulated signal is a sinusoidal function; in the second and third the amplitude modulated signal is also frequency modulated-eitber ascending or descending. The frequency modulation is such that $\Delta f . f_{0}=i(2 n+1)$ where Δf is change in frequency and f is center frequency. [From Barrett, 1971, p. 133.]
defined over a sequence space. Reconciliation of the two spaces is provided by a Hilbert space representation.

The requirements for Eq. 1 may be obtained in the time and frequency domains by the following definitions (Gabor, 1947):

The c in Eq. 4 is related to the duration and the bandwidth of the signal :

$$
\begin{equation*}
\Delta t=\sqrt{\frac{\pi}{2}} / c, \Delta f=c / \sqrt{2 \pi} \tag{5}
\end{equation*}
$$

 spread or dispersion of signal energy in the time and frequency domains. But Δt and Δf are only obliquely referenced by these expressions, because Δt does not equal $\left(t-t_{0}\right)^{2}$ and Δf does not equal $\left(f-f_{0}\right)^{2}$. This is because-to reiterate our point-f, $t, f a$, and t_{0} are variables of a sequence space measuring rates, and Δf and Δt are variables of an integration space not measur-
 $(f-f 0)^{2}$ and Δf arises because a mosisin seconds/cycle can be related to a mertan seconds, and, likewise, a measurement (hertz) can be related to
wifhout direct equalization.

Given four observables of reorganizing of informational Another bounding condition for an elementin) may be defined relating the logical f_{0} and t_{4} :

$$
f_{0} \cdot t_{0}=\frac{1}{2} .
$$

In effect, Eq. 6 amounts to setting the the Eq. 4 equal to unity, and an elementary signum bean a four-dimensional measure in both integrebun sequence spaces. Thereby, the variety of elemetwon, logon signal forms obtainable by the Gabor 0la formulation due to variation in the value of the coase c no longer exists once information is definod and

Fic. 2. Elementary sanals with amplitude mothhi and $D_{2}(x)$; otherwise 25 in Fig. 1. [From Barrett, 1 .nt

STRUCTURAL INFORMATION THEORY

$3 t$ are c

"urenim. .
sutctict -
ycie we. in cixe os
:24d ad to

- talim! . chtar: athin ie:
comsla. titnal ise r. 1tepratre: tetraxas. Gialuet ise If the recras chined act e


```
space \(\mathcal{X}\) may be defined as
\[
\begin{equation*}
x=5 \pi \pi_{1}-9 \pi_{2} \tag{10}
\end{equation*}
\]

The elementary signal definitions of Eq. 7 thus reduce to a real number. With \(\Delta f \cdot \Delta t=\frac{1}{2}\) and \(f_{0} \cdot \frac{1}{4}=\frac{1}{2}, a \alpha^{*}=\frac{1}{2}\). If an arbitrary signal is redefined as a set of elementary signals, then \(\alpha \alpha^{*}\) is a real number measure of the signal's information structure.

The procedure used in obtaining this simple signal definition is the reverse of that normally used in information theory analyses. Usually, a signal is defined as a simple circular function and the derivation proceeds until a complex information space definition results. Here, a complex signal is defined (exactly), and a simple information structure definition is obtained.

\section*{II. PRELIMINARY DISCUSSION}

There are certain similarities in the procedure used here to that of the "relative state" formulation of quan-


Fic. 4. Elementary signals with amplitude modulation \(D_{1}(x)\); otherwise as in Fig. 1. [From Barrett, 1971, p. 134.]

An Dementary signals with amplitude modulation \(D_{4}(x)\); min in Fict L. [From Bartett, 1971, p. 134.]

thapration space but also sequence spaces. A fourthenticnal informational quantum has a rigidly debulform for every minimum condition, such as those 4 Rel \(^{1} 1\) and 6 (d. Figs. 1-4).
\(\mathrm{H}_{4}\) definition of elementary signals in vector form
4 andy expresses values of a signal but provides an
\({ }^{4}\) agnt definition. Elementary signals can be defined
Maty, 1972a):

\(a=\Delta f \cdot \Delta t+j f_{0}-l_{0}\) in subspace \(9 \pi_{1}\), \(\theta=\Delta f \cdot \Delta t-j f_{0}-f_{0}\) in subspace \(\pi_{2}\).
ationnulation, two pairs of canonically conjugate
Tathe (Courant and Hilbert, 1953, p. 223) are tanced, with
\[
\begin{equation*}
\beta=\alpha^{*}, \tag{8}
\end{equation*}
\]

4as "denotes complex conjugation. A signal is defined mory product \(c \alpha^{*}\) of two vectors \(x\) and \(y\), with The components in the subspaces \(\mathrm{R}_{1}\) and \(\mathrm{TR}_{2}\) :
coschytat
rick \(\mathbf{r}-1 \Delta f \cdot \Delta t+j f_{6} \cdot t_{0}\) for \(9 R_{5}\),
jfy
are orthogonal unit vectors; \(i\) has the + cycles-seconds and \(j\) (to a stationary


An inner product or Hilbert


\section*{}

! \(D_{1}=-1\), :
att an
tite uithonom.
formeryere :
\(b_{t}\) dritit.

we haveruis.
\(i=1,1\),
\((i=1,2)\),
ditionts
\(\dot{\delta}_{i j}\),
in 10

The 'rovetumta' destribud ar 120 , one oblaim:sector Mue 年: upping \(l\). fuc H ,

\section*{\(+\beta L y\)}
bers, \(\alpha\) and \(2 \infty\) ore, a lienst tos: a complex valur: 1951) (i) \& is \(x^{2}\)
d y in H , and
( \(\mathbf{x}\) )
and for wet? ". unctional upe - \(^{-}\) could be equivir necessity in 2 \(z\) information ice, ie.

and for every x and y in \(\nVdash, \epsilon_{y}\) is a linear and \(n_{n}\) is a conjugate linear functional.
Thtinear functional, there is associated a ras (Lusternik and Sobolev, 1961, p. 259) follows : a bilinear functional \(\phi\) on a complex 5ute obtains a function \(\phi\), the quadratic form Vector \(\mathbf{x}\) by which \(\phi(\mathbf{x})=\phi(\mathbf{x}, \mathbf{x})\). Thus, the Arhpor-represented signal can be shown to be 10. 951 , pp. 12-13) :
\(\dot{x})^{4}[(x+y)]-\phi\left[\frac{1}{3}(x-y)\right]\)
जnjurn \(\frac{x+y}{4}+i \phi\left[\frac{1}{2}(x+i y)\right]-i \phi\left[\frac{1}{2}(x-i y)\right]\).
tad herecprocal relations of Eqs. 1 and 6 bounding 4 vetoon \(x\) and \(y\) of Eq. 9, \(\phi(x, y)=\phi^{*}(y, x)\). The than finctional defining the signal is, therefore, , teaterde over the four signal dimensions.
Me nermesentation need not be confined to an inner mat prace. Consider the functional space whose "atboes rre defined on a finite interval, ( \(a, b\) ), and for twal the Lebesgue integral exists and is finite. Then, 4 the equivilence classes of square integral functions isepera vilued) on ( \(a, b\) ), we can take, as the product wowe the two classes \(F\) and \(G\) :

\section*{1}

and where the bar denotes complex conjugation.
To grae lin which these integrals exist is referred to
- L_4) Epace (Dennery and Krzywicki, 1967; Bach-

Naric, 1966); the \(L\) represents the name 4 areve the subscript 2 indicates the integrability 4 tr modulus of each function representing a vector
to \(\boldsymbol{L}_{1}(a, b)\). In the case we are interested in \(0, \circ^{2}\), the dasses will be \(\mathbf{X}_{\text {, }}\) i.e., ( \(\mathbf{X}, \mathbf{X}\) ).
Wpone yector \(w \in L_{2}(a, b)\) approximated as a
4 peng of inite sum of base vectors \(e_{i} \in L_{2}{ }^{2}(a, b)\).
- ande vectors correspond to the elements of Man and y of Eq. 9 ; then
\[
\begin{equation*}
\sum_{i=1}^{m} w^{k} e_{i}, \quad i=1,2 \tag{17}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{e}_{1} \mathbf{e}_{2}=8 . \tag{18}
\end{equation*}
\]

In Eq. 17 are the Fowrier coeffcients in Eq. 17 are the Fow
to the bases \(\mathrm{e}_{1}\) and \(\mathrm{e}_{2}\).
coefficients satisfy the convergence
\[
\begin{equation*}
\sum_{i=1}^{\infty}\left|w^{2}\right|^{2}<\infty, \tag{19}
\end{equation*}
\]

\footnotetext{
I am using the word "sssociation" to imply a relation less strong than equality.
\({ }^{3}\) For a discussion of this property see Barrett (1972c).
The reviewer of this paper broaght to my attention the paper by J. T. Wiathrop ["Propagation of Structural Information in Optical Wswe Fields," J. Opt, Soc. Am. 61, 15-30 (1971) Winthrop addresses the topic of structural information theory and light.
}
and Krzywicki 1967, p. 197). Also, a vector in Hilbert space whose components are treated as Fourier coefficients determines some vector in \(L_{2}(a, b)\). The one-to-one correspondence between the elements of the Hilbert space and the function space \(L_{2}(a, b)\) means that the two spaces are isomorphic.
It is possible, therefore, to represent a signal by both a quadratic form on the Hilbert space or as Fourier coefficients in isomorphic function space. Each Fourier cocfficient would give a measure of the overall system in the subsystems, i.e., in this instance, two subsystems, and would correspond to the absolute value of the vectors \(x\) and \(y\). A basic principle of quantum mechanics is thus obeyed; namely, all the physically relevant information about a physical system at a given instant of time is derivable from the knowledge of the state function of the system.

\section*{IV. DISCUSSION}

The analysis of this paper is based on the notion of the fundamental nature of the distribution of energy to forms of information. The view that the amount of energy transduced by the CNS, equated with the number of action potentials in a given period, will give a measure of (a) the amount of information in the sensory signal, or (b) the amount by which a signal needs to be increased in order to be detected, has found adherents (Fitzhugh, 1957; Barlow, 1962-in visual physiology; McGill, 1967; Green and Swets, 1966, Chap. 8 -in audition and signal detection theory). By the methods presented here, this interest is now extended into an analysis of the forms in which the fundamental notion of energy can exist, i.e., how that energy is distributed. The import of this paper inindicates further developments \({ }^{2}\) : the succinct description of the total information content of a signal and its reduction to a set of numbers in Hilbert space implies a description of the Hamiltonian of the system. The resulting Hilbert space representation is related to the overall energy distribution of the system under consideration. Thus a development of this line of reasoning (Barrett, 1971, 1973) follows the path taken by Schrodinger with the important exception that the "Hamiltonian" describes energy distribution, rather than absolute energy amounts. There is, of course, no correspondence between the total energy in a system and the complexity of its distribution. Yet a measure of that complexity is an information measure.

Bachman, G., and Narici, L. (1966). Functional Analysis (Academic, New York).
Sariow, H. B. (1962). "Measurements of the Quantum Efficiency of Discrimination in Human Scotopic Vision," J. Physiol. (Lond.) 160, 169-188.
Barrett, T. W. (1971). "The Information Content of an Electromagnetic Field with Relevance to Sensory Processing of Information," T.-L-T. J. Life Sci. 1, 129-135.
Barrett, T. W. (1972a), "On Vibrating Strings and Information Theory," J. Sound Vib. 20, 407-412.
Barrell, I. W. (1972b), "Conservation of Information," Acustica 27, 44-47.
Barrett, T. W. (1972c). "The Definition Precedence of Signal Parameters: sequential versus simultaneous information," Acustice 27, 90-93.
Barrett, T. W. (1972d). "The Conceptual Basis of Two Information Theories--A Reply to some Criticisms," J. Sound and Vibration 25, 638-642,
Barrett, T. W. (1973). "Anslytical Information Theory." Acustica (in press)
Brillouie, L. (1962). Sclence and Information Theory (Academic, New York), 2nd ed.
Cauchy, A. L. (1821). Cours d'Analyse de l'Ecole Royale Polytechnique (Imprimerie Royale, Paris).
Corliss, E. L. R. (1963), "Resolution Limits of Analyzers and Oscilistory systems," I. Res. Nstl. Bur. Stand. (U.S.) 67A, 461-474.
Courant, R., and Hilbert, D. (1953). Meshods of Mathematical Physics (WIey, New York), Vol. 1.
Dennery, P., and Krzywicki, A. (1967), Mathemartes for Physicisrl (Harper and Row, New York)
DeWitt, B. S. (1968). "The Everett-Wheelef Iaterpretation of Quasturn Mechanies," in Battelle Rencontres, 1967 Lecrures in Mathematies and Physics, edited by C. DeWitt and d. A. Wheeler (W, A Benjamis, New York).
Everett, H., III (1957). "Relative Shate Formulation of Quantum Mechanics," Rev. Mod. Phys. 29, 454-462.
Fitzhugh, R. (1957). "The Statistical Detection of Threshold Signals in the Retina," J. Gen. Physiol. 40, 925-948.

Gabor, D. (1946). "Theory of Communication \({ }^{4}\) Eng. 93, 429-457.
Gabor, D. (1947a). "Acoustical Quanta and the Hearing." Nature (Lond.) 159, 591-594.
Gabor, D. (1953). "A Summary of Communicuring (h) Commanication Theory, edited by W. Jackaon (Ambio New York)
Green, D. M., and Swets, 1. A. (1966). Signal Daterthes Theory and Psychophysies (Wiley, New Yeet).
Halmos. P. R. (1951). Introduction to Hilbers Spoem and Theory of Spectral Multiplicity (Chelses. Nesy Yot oo Hille, E. (1959, 1962). Analytic Function Theory (Otiti Co., Boston), Vols 1 and 2.
Kharkevich, A. A. (1960). Spectra and Analyrh (Corn Burean, New York)
 Sousd." J. Acoust. Soc. Am. 7, 56-58.
Lusternik, L. A., and Sobolev, V. J. (1961). Elemait ifl Funcrional Analyas (Hindustan Publ. Co., Dellit, Canden Breach, New York).
Maddox, I. J. (1970). Elements of Functional Analfid (Camberidge, U. P. Cambridge, Eegland).
McGill, W. (1967). "Neural Counting Mechach Energy Detection is Audition," J. Math. Pyyebol 4, 351-376.
Pimonow, L. (1962). Vibrarions en regime trantiofor © Paris).
Rink, R. W. (1970). "Degrees of Freedom of Cochler Patterns," J. Acoust. Soc. Am. 44, 1379-1382. -7 हु
Stewart, G. W. (1931). "Problems Suzgested by an "Y \(\not \subset\) " Uncertainty Principle in Acoustics," 1. Acoust Son AB 2. 325-319.

Whecier, J. A. (1957). Assessmest of Everett's 'Rechthonet formulation of quantum theory," Rev. Mod. Phyn "论? 29, 454-462.
vot Békésy, G. (1965). "Cochlear Mechanics," In Ractuded and Marhematical Biology, edited by T. H. Wateneio \(\mathfrak{a} 1\) H. J. Motowitz (Blsisdell, New York), Chap. 7, g. 17-17```

